Honorary Editors: Lotfi A. Zadeh, University of Berkeley, USA Janusz Kacprzyk, International Fuzzy Systems Association, Poland

Editors: Leonid Kazovsky, Stanford University, USA Pierre Borne, Ecole Centrale de Lille, France Nikos Mastorakis, Military Institutes of University Education, HNA, Greece Angel Kuri-Morales, Instituto Tecnologico Autonomo de Mexico, Mexico Ioannis Sakellaris, National Technical University of Athens, Greece

ADVANCES on ARTIFICIAL INTELLIGENCE, KNOVLEDGE ENGINEERING and DATES FASTS

Published by WSEAS Press www.wseas.org

Proceedings of the 7th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED '08)

> University of Cambridge, Cambridge, UK, February 20-22, 2008

Artificial Intelligence Series A Series of Reference Books and Textbooks

ISBN: 978-960-6766-41-1 ISSN: 1790-5109

ADVANCES on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES

Proceedings of the 7th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08)

University of Cambridge, Cambridge, UK, February 20-22, 2008

Artificial Intelligence Series A Series of Reference Books and Textbooks

> Published by WSEAS Press www.wseas.org

ISBN: 978-960-6766-41-1 ISSN: 1790-5109

ADVANCES on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES

Proceedings of the 7th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08)

University of Cambridge, Cambridge, UK, February 20-22, 2008

Artificial Intelligence Series A Series of Reference Books and Textbooks

Published by WSEAS Press www.wseas.org

Copyright © 2008, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html

ISBN: 978-960-6766-41-1 ISSN: 1790-5109

World Scientific and Engineering Academy and Society

ADVANCES on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES

Proceedings of the 7th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08)

University of Cambridge, Cambridge, UK, February 20-22, 2008

Honorary Editors:

Lotfi A. Zadeh, University of Berkeley, USA

Janusz Kacprzyk, International Fuzzy Systems Association, Poland

Editors:

Leonid Kazovsky, Stanford University, USA

Pierre Borne, Ecole Centrale de Lille, France

Nikos Mastorakis, Military Institutes of University Education, HNA, Greece

Angel Kuri-Morales, Instituto Tecnologico Autonomo de Mexico, Mexico

Ioannis Sakellaris, National Technical University of Athens, Greece

International Program Committee Members:

Cuauhtemoc Rodriguez, University of Cambridge, Cambridge, UK Gehan A.J. Amaratunga, University of Cambridge, Cambridge, UK Lotfi A. Zadeh, Univ. of Berkeley, USA Leonid Kazovsky, Univ. of Stanford, USA Charles Long, University of Wisconsin, USA Katia Sycara, Carnegie Mellon University, USA Nikos E. Mastorakis, Military Inst. of University Education (ASEI), HNA, GREECE Ing. Roberto Revetria, Univ. degli Studi di Genova, USA M. Isabel Garcia-Planas, Univ. of Barcelona, SPAIN Miguel Angel Gomez-Nieto, University of Cordoba, SPAIN Akshai Aggarwal, University of Windsor, CANADA Pierre Borne, Ecole Centrale de Lille, FRANCE Octavian Cret, Technical University of Cluj-Napoca, ROMANIA Valeri Mladenov, Technical University of Sofia, Bulgaria Zoran S. Bojkovic, University of Belgrade, SERBIA G. Stavrakakis, Technical Univ. of Crete, GREECE Janusz Kacprzyk, International Fuzzy Systems Association, POLAND Angel Fernando Kuri Morales, Univ. of Mexico City, MEXICO Arie Maharshak, ORT Braude College, ISRAEL Fumiaki Imado, Shinshu University, JAPAN Simona Lache, University Transilvania of Brasov, ROMANIA Toly Chen, Feng Chia University, TAIWAN Isak Taksa, The City University of New York, USA G. R. Dattatreya, University of Texas at Dallas, USA Shivanand Hiremath, NITIE, Mumbai, INDIA

Preface

This book contains proceedings of the 7th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08) which was held in University of Cambridge, Cambridge, UK, and February 23-25. The WSEAS ARTIFICIAL INTELLIGENCE, **KNOWLEDGE** 2008. ENGINEERING and DATA BASES Conference started in Cadiz, Spain, in 2002 then held in Rethymno, Greece 2003. It proceeded twice in Salzburg, Austria in 2004 and 2005. It also held in Corfu, Greece in 2007 and this year in University of Cambridge, Cambridge, UK. The Society (WSEAS) has also organized many other separate or joint conferences on Artificial and Computational Intelligence Knowledge Mining, Knowledge management, Data Bases, Software Tools, Man-Machine Systems, Cybernetics etc as well as their impact and their interaction with other areas of Electrical Engineering and Computer Science and Engineering. The relevant titles could be retrieved from the web site: www.worldses.org/history.htm

The 7th WSEAS International Conference on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES (AIKED'08) aims to disseminate the latest research and applications in the afore mentioned fields. The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers. The WSEAS Conferences attract a large number of well-established and leading researchers in various areas of Science and Engineering as you can see from http://www.wseas.org/reports. Your feedback encourages the society to go ahead as you can see in http://www.worldses.org/feedback.htm

The contents of this Book are also published in the CD-ROM Proceedings of the Conference. Both will be sent to the WSEAS collaborating indices after the conference: www.worldses.org/indexes

In addition, papers of this book are permanently available to all the scientific community via the WSEAS E-Library.

Expanded and enhanced versions of papers published in these conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, Compendex, INSPEC, CSA see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal).

We cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals.

The Editors

TABLE OF CONTENTS

Plenary Lecture I: Toward Human-Level Machine Intelligence Lotfi A. Zadeh	15
Plenary Lecture II: Decision support systems, human centric/centered computing, and computing with words: a synergistic combination? Janusz Kacprzyk	17
Plenary Lecture III: Clustering with an N-Dimensional Extension of Gielis Superformula Angel Kuri-Morales	18
Plenary Lecture IV: Data Mining through Data Visualisation: Computational Intelligence Approaches Colin Fyfe	19
Plenary Lecture V: Formalisation and Verification in a Type-theoretic Framework Zhaohui Luo	20
Plenary Lecture VI: Probability Measures of Fuzzy Events and Linguistic Fuzzy Modelling - Forms Expressing Randomness and Imprecision Anna Walaszek-Babiszewska	21
PART I: ARTIFICIAL INTELLIGENCE Evaluating approximations generated by the GNG3D method for mesh simplification Pedro Navarro, Leandro Tortosa, Antonio Zamora, Jose F. Vicent	25
Dirichlet process mixture models for finding shared structure between two related data sets Gayle Leen,Colin Fyfe	31
Automatic Extraction of Important Sentences from Story Based on Connecting Patterns of Propositions Hideji Enokizu, Satoshi Murakami, Moriaki Kumasaka, Kazuhiro Uenosono, Seiichi Komiya	41
Proposed Framework to Manage Cognitive Load in Computer Program Learning Muhammed Yousoof, Mohd Sapiyan, K.Ramasmy	50
A hybrid GA & Back Propagation Approach for gene selection and classification of microarray data Omid Khayat, Hamid Reza Shahdoosti, Ahmad Jaberi Motlagh	56

Identifying Psycho-Social Fingerprints in Medical and Engineering Documents Mateja Verlic, Gregor Stiglic, Peter Kokol	62
Application and comparison of several artificial neural networks for forecasting the Hellenic daily electricity demand load <i>L. Ekonomou, D.S. Oikonomou</i>	67
Huge scale feature selection using GA with special fitness function Omid Khayat, Hamid Reza Shahdoosti, Ahmad Jaberi Motlagh	72
Computer Recognition of Aesthetics in a Zero-sum Perfect Information Game Azlan Iqbal, Mashkuri Yaacob	78
Framework for extracting rotation invariant features for image classification and an application using haar wavelets Santiago Akle, Maria-Elena Algorri, Marc Zimmermann	89
Case Based Reasoning for Predicting Multi-Period Financial Performances of Technology-based SMEs Tae Hee Moon, So Young Sohn	95
Enhancing the Security of E-Government Portals using Biometric Voice along with a Traditional Password Khalid T. Al-Sarayreh, Rafa E. Al-Qutaish	101
An overview on Model-Based approaches in face recognition Omid Khayat, Hamid Reza Shahdoosti, Ahmad Jaberi Motlagh	109
Artificial Societies: a new paradigm for complex systems modelling Monica Dascalu, Eduard Franti, Gheorghe Stefan, Lucian Milea	116
Characteristics Analysis for Small Data Set Learning and the Comparison of Classification Methods Fengming M. Chang	122
Modeling Production with Artificial Societies: the Emergence of Social Structure	128
Monica Dascalu, Eduard Franti, Gheorghe Stefan, Lucian Milea	
An All Closed Set Finding Algorithm for Data Mining Rein Kuusik, Grete Lind	135
Strategies for advancing the status of women scientists and engineers in Korea JongHa Lee, SoYoung Sohn	142

Routing Framework for FTIMA – A Fault Tolerance Infrastructure for Mobile Agents	148
Kiran Ijaz, Umar Manzoor, Arshad Ali Shahid	
Optimizing Bandwidth Usage and Supporting Block Level Synchronizing in MultiSync – A MultiAgent System for Ubiquitous File Synchronization Umar Manzoor, Kiran Ijaz	154
Using Genetic Programming & Neural Networks for learner evaluation John Vrettaros, John Pavlopoulos, George Vouros, Athanasios S. Drigas	160
State Space Optimization Using Plan Recognition and Reinforcement Learning on RTS Game Jaeyong Lee, Bonjung Koo and Kyungwhan Oh	165
A multi-agent Cooperative Model for Crisis Management System Abeer El-Korany Khaled El-Bahnasy	170
Topology perserving mappings using cross entropy adaptation <i>Ying Wu and Colin Fyfe</i>	176
Customer Pattern Search for A/S Association in Manufacturing Jin Sook Ahn, So Young Sohn	182
Comparative analysis of classical and fuzzy PI algorithms Jenica Ileana Corcau, Eleonor Stoenescu, Mihai Lungu	189
Stable Relief in feature weighting Omid Khayat, Hamid Reza Shahdoosti, Mohammad Hosein Khosravi	193
Image classification using Principal Feature Analysis Omid Khayat, Hamid Reza Shahdoosti, Mohammad Hosein Khosravi	198
PART II: Computational Intelligence	205
Probability measures of fuzzy events and linguistic fuzzy modelling - forms expressing randomness and imprecision Anna Walaszek-Babiszewska	207
Association-Based Image Retrieval for Automatic Target Recognition Arun Kulkarni, Harikrisha Gunturu, And Srikant Datla	214
A Model Constructed Based on Multi-Criteria Decision Making With Incomplete Linguistic Preference Relations Tien-Chin Wang,Shu-Chen Hsu	220
Feature Selection Strategies for Poorly Correlated Data: Correlation Coefficient Considered Harmful Silang Luo, David Corne	226

Position control of a robotic manipulator using neural network and a simple vision system Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay	232
Clustering with alternative similarity functions Wesam Barbakh and Colin Fyfe	238
Optimization of Mine Machine Modes of Operation on the Basis of Fuzzy Logic Technology <i>E.S. Balbino, P.I. Ekel</i>	245
Predicting admission counseling triumph of colleges using neural networks Priti Puri, Maitrei Kohli	250
Application of the Self Organizing Maps for Visual Reinforcement Learning of Mobile Robot Hiroshi Dozono, Ryouhei Fujiwara and Takeshi Takahashi	257
Successful joint venture strategies based on data mining Jin Hyung Kim, So Young Sohn	263
Robust decision making using Data Envelopment Analytic Hierarchy Process Subramanian Nachiappan and Ramakrishnan Ramanathan	269
Artificial Societies Simulator Monica Dascalu, Eduard Franti, Gheorghe Stefan, Lucian Milea, Marius Stoian	276
Using Fuzzy Multiple Criterion Methods for Fourth Party Logistics Criteria Selection Jao-Hong Cheng, Shiuann-Shuoh Chen, Yu-Wei Chuang	282
Relative Distance Identification in "Smart Dust" Networks for Environmental Modelling <i>Graham Rollings, David Corne</i>	289
Simulator for Production Modeling - Virtual Experiments Monica Dascalu, Eduard Franti, Lucian Milea, Marius Stoian, Gabriel Sebe	295
An Alternative Approach for Computing the Union and Intersection of Fuzzy Sets: A Basis for Design of Robust Fuzzy Controllers Vincent O. S. Olunloyo, Abayomi M. Ajofoyinbo, Adedeji B. Badiru	301
Image to Sound Transforms and Sound to Image Visualizations based on the Chromaticism of Music Dionysios Politis, Dimitrios Margounakis, Michail Karatsoris	309
Predicting the Success of B2B E-commerce in Small and Medium Enterprises: Based on Consistent Fuzzy Preference Relation Wang Tien-Chin, Lin Ying-Ling	318

Tabu-based Evolutionary Algorithm with Negative Selection for Pareto optimization in Distributed Systems <i>Jerzy Balicki</i>				
Implementation of an Autonomous Tracking System for UGVs using FPGAs Akhtar Nawaz, Muhammad Ali, Tipu Qureshi	333			
Applying Incomplete Preference Linguistic Relations to Criteria for Evaluating Multimedia Authoring System Tien-Chin Wang, Ying-Hsiu Chen, Yu-Chen Chiang	338			
Clustering with an N-Dimensional Extension of Gielis Superformula Angel Kuri Morales, Edwin Aldana Bobadilla	343			
Investigating methods for improving Bagged k-NN classifiers Fuad M. Alkoot	351			
A Fuzzy Logic Based Hierarchical Driver Aid for Parallel Parking Tarik Ozkul, Muhammed Mukbil, Suheyl Al-Dafri	357			
PART III: Knowledge Engineering	363			
Peer to Peer Model for Virtual Knowledge Communities Pierre Maret, Julien Subercaze, Jacques Calmet	365			
Global Model For Rapid And Easy Learning 2007 – 2020 Vinko Viducic	371			
A new method for computer aided detection of pulmonary nodules in X- ray CT images Noriyasu Homma, Kazunori Takei, Tadashi Ishibashi	379			
Minimal Representation of Type-Hierarchies Richard Elling Moe	385			
Generating the Translation Equivalent of Agentive Nouns Using Two- Level Morphology Arbana Kadriu, Lejla Abazi	392			
Blending e-Learning and Knowledge Management for Optimizing Learning Paths Dumitru Dan Burdescu, Marian Cristian Mihaescu	396			
Social networks, collaboration and groupware software for the scientific research process in the web 2.0 world Serena Pastore	403			

Coordination Mechanism for Optimized Provision os Services in an Area Yuki Mori, Fumiko Harada, Hiromitsu Shimakawa					
Structuring Technological Information for Technology Roadmapping: Data Mining Approach Byungun Yoon, Robert Phaal, David Probert	417				
Knowledge organization with pattern recognition in an auto-adaptive system Camille Havas, Othalia Larue, Mickael Camus	423				
Aspects Regarding the Use of Sec-Ded Codes to the Cache Level of A Memory Hierarchy Ovidiu Novac, Mircea Vladutiu, Stefan Vari-Kakas, Francisc Ioan Hathhayi, Mihaela Novac	430				
The impact of independent model formation on model-based service interoperability <i>Teun Hendriks</i>	434				
CKBLS: An Interactive System for Collaborative Knowledge Building and Learning Kathiravelu Ganeshan	442				
Productivity Improvement of manufacturing SMEs via Technology Innovation in Korea <i>Min Kyun Doo, So Young Sohn</i>	448				
Efficient Determination of the Sequence of Attributes of an N-attributed Database for Obtaining an Optimal Tree Representation Ranjeet Kumar, Preetham Kumar, Ananthanarayana V S	454				
IRQAS: Information Retrieval and Question Answering System Based on A Unified Logical-Linguistic Model Tengku M. Sembok, Halimah Badioze Zaman, Rabiah Abdul Kadir	460				
An Image Based Interactive Digital Library of Mechanical Engineering Objects Muhammad Abuzar Fahiem, Saadia Jehangir	465				
Early Fault Detection using A Novel Spectrum Enhancement Method for Motor Current Signature Analysis Niaoqing Hu, Yue Zhang, Fengshou Gu, Guojun Qin, Andrew Ball	470				
Classifier Based Text Mining for Radial Basis Function Govindarajan M, Chandrasekaran RM	476				

Appraisal of Course Learning Outcomes using Rasch Measurement: A Case Study in Information Technology Education Azlinah Mohamed, Azrilah Abd Aziz, Sohaimi Zakaria & Mohdsaidfudin Masodi	482
Minimization of OR-XNOR Expressions Using Four New Linking Rules Khalid. Faraj	489
Adaptive Filtering of Heart Rate Variation Signal Based on an Efficient Model S. Seyedtabaii & R. Seyedtabaii	495
Distributed Mining of Censored Production Rules in Data Streams: An Evolutionary Approach Saroj, K. K. Bharadwaj	500
PART IV: Data Bases	507
Extracting data from virtual data warehouses – a practical aproach of how to improve query performance Adela Bara, Ion Lungu, Manole Velicanu, Vlad Diaconita, Iuliana Botha	509
Mining Infrequent and Interesting Rules from Transaction Records Alex Tze Hiang Sim, Maria Indrawan, Bala Srinivasan	515
Towards a Network – Oriented System for Cooperative Music Composition <i>Dimitrios Margounakis, Dionysios Politis, Panagiotis Linardis</i>	521
The Romanian Universities in the Process of Data and Information System Integration Ana Ramona Lupu, Razvan Bologa, Gheorghe Sabau, Mihaela Muntean	527
Portal oriented integration in public institutions Diaconita Vlad, Botha Iuliana, Bara Adela, Lungu Ion, Velicanu Manole	532
Complete Algorithm for fragmentation in Data warehouse Ziyati Elhoussaine, Driss Aboutajdine, El Qadi Abderrahim	537
Mathematical model for storing and effective processing of directed graphs in semistructured data management systems Andrei Malikov, Yury Gulevsky, Dmitry Parkhomenko	541
Business Intelligence Solutions For Gaining Competitive Advantage Mihaela Muntean, Gabriela Mircea	549

A web based geoenvironmental data exchange information system Charalampos Stergiopoulos, Panagiotis Tsiakas, Dimos Triantis, Filippos Vallianatos	553
Evaluating Business Intelligence Platforms: a case study Carlo dell'Aquila, Francesco Di Tria, Ezio Lefons, and Filippo Tangorra	558
Holistic Approach for Classifying and Retrieving Personal Arabic Handwritten Documents Salama Brook and Zaher Al Aghbari	565
Web programing for conference and electronic publication management Cioca Marius, Cioca Lucian-Ionel, Cioranu Cosmin	571
Cluster analysis and Association analysis for the same data Huaiguo Fu	576

Plenary Lecture I

Toward Human-Level Machine Intelligence

Professor Lotfi A. Zadeh Professor in the Graduate School, Computer Science Division Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 -1776 Director, Berkeley Initiative in Soft Computing (BISC)

Abstract: Achievement of human-level machine intelligence has profound implications for modern society a society which is becoming increasingly infocentric in its quest for efficiency, convenience and enhancement of quality of life. Humans have many remarkable capabilities. Among them a capability that stands out in importance is the human ability to perform a wide variety of physical and mental tasks without any measurements and any computations, based on perceptions of distance, speed, direction, intent, likelihood and other attributes of physical and mental objects. A familiar example is driving a car in city traffic. Mechanization of this ability is a challenging objective of machine intelligence. Science deals not with reality but with models of reality. In large measure, models of reality in scientific theories are based on classical, Aristotelian, bivalent logic. The brilliant successes of science are visible to all. But when we take a closer look, what we see is that alongside the brilliant successes there are areas where achievement of human-level machine intelligence is still a distant objective. We cannot write programs that can summarize a book. We cannot automate driving a car in heavy city traffic. And we are far from being able to construct systems which can understand natural language. Why is the achievement of human-level machine intelligence a distant objective? What is widely unrecognized is that one of the principal reasons is the fundamental conflict between the precision of bivalent logic and imprecision of the real world. In the world of bivalent logic, every proposition is either true or false, with no shades of truth allowed. In the real world, as perceived by humans, most propositions are true to a degree. Humans have a remarkable capability to reason and make rational decisions in an environment of imprecision, uncertainty, incompleteness of information and partiality of truth. It is this capability that is beyond the reach of bivalent logic-a logic which is intolerant of imprecision and partial truth. A much better fit to the real world is fuzzy logic. In fuzzy logic, everything is or is allowed to be graduated, that is, be a matter of degree or, equivalently, fuzzy. Furthermore, in fuzzy logic everything is or is allowed to be granulated, with a granule being a clump of elements drawn together by indistinguishability, similarity, proximity or functionality. Graduation and granulation play key roles in the ways in which humans deal with complexity and imprecision. In this connection, it should be noted that, in large measure, fuzzy logic is inspired by the ways in which humans deal with complexity, imprecision and partiality of truth. It is in this sense that fuzzy logic is human-centric. In coming years, fuzzy logic and fuzzylogic-based methods are likely to play increasingly important roles in achievement of human-level machine intelligence. In addition, soft computing is certain to grow in visibility and importance. Basically, soft computing is a coalition of methodologies which in one way or another are directed at the development of better models of reality, human reasoning, risk assessment and decision making. This is the primary motivation for soft computing—a coalition of fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and machine learning. The guiding principle of soft computing is that, in general, better results can be achieved through the use of constituent methodologies of soft computing in combination rather than in a stand-alone mode.

Brief biography of the speaker: LOTFI A. ZADEH is a Professor in the Graduate School, Computer Science Division, Department of EECS, University of California, Berkeley. In addition, he is serving as the Director of BISC (Berkeley Initiative in Soft Computing).Lotfi Zadeh is an alumnus of the University of Tehran, MIT and Columbia University. He held visiting appointments at the Institute for Advanced Study, Princeton, NJ; MIT, Cambridge, MA; IBM Research Laboratory, San Jose, CA; AI Center, SRI International, Menlo Park, CA; and the Center for the Study of Language and Information, Stanford University. His earlier work was concerned in the main with systems analysis, decision analysis and information systems. His current research is focused on fuzzy logic, computing with words and soft computing, which is a coalition of fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and parts of machine learning. Lotfi Zadeh is a Fellow of the IEEE, AAAS, ACM, AAAI, and IFSA. He is a member of the National Academy of Engineering and a Foreign Member of the Russian Academy of Natural Sciences, the Finnish Academy of Sciences, the Polish Academy of Sciences, Korean Academy of Science & Technology and the Bulgarian Academy of Sciences. He is a recipient of the IEEE Education Medal, the IEEE Richard W. Hamming Medal, the IEEE Medal of Honor, the ASME Rufus Oldenburger Medal, the B. Bolzano Medal of the Czech Academy of Sciences, the Kampe de Feriet Medal, the AACC Richard E. Bellman Control Heritage Award, the Grigore Moisil Prize, the Honda Prize, the Okawa Prize, the AIM Information Science Award, the IEEE-SMC J. P. Wohl Career Achievement Award, the SOFT Scientific Contribution Memorial Award of the Japan Society for Fuzzy Theory, the IEEE Millennium Medal, the ACM 2001 Allen Newell Award, the Norbert Wiener Award of the IEEE Systems, Man and Cybernetics Society, Civitate Honoris Causa by Budapest Tech (BT) Polytechnical Institution, Budapest, Hungary, the V. Kaufmann Prize, International Association for Fuzzy-Set Management and Economy (SIGEF), the Nicolaus Copernicus Medal of the Polish Academy of Sciences, the J. Keith Brimacombe IPMM Award, the Silicon Valley Engineering Hall of Fame, the Heinz Nixdorf MuseumsForum Wall of Fame, other awards and twenty-six honorary doctorates. He has published extensively on a wide variety of subjects relating to the conception, design and analysis of information/intelligent systems, and is serving on the editorial boards of over sixty journals.

Plenary Lecture II

Decision support systems, human centric/centered computing, and computing with words: a synergistic combination?

Professor Janusz Kacprzyk Fellow of IEEE, IFSA Systems Research Institite Polish Academy of Sciences Ul. Newelska 6 01-447 Warsaw Poland E-mail: <u>kacprzyk@ibspan.waw.pl</u> Web page: <u>https://www.ibspan.waw.pl/~kacprzyk</u>

Abstract: We start with a brief account of complex decision making problems, and advocate the use of modern approaches to real world decision making emphasizing the concept of a decision making process that involves more factors and aspects like: the use of explicit and tacit knowledge, intuition, individual habitual domains, non-trivial rationality, different paradigms, etc. We stress the need for computer based decision support systems that should exhibit some "intelligence" which is meant in an individual and collective perspective, and give an overview of main types of decision support systems. We present some new so-called computing paradigms that try to attain a synergy, and bridge the gap between the human user and computer systems that is mainly caused by the fact that natural language is the only fully natural means of communication and articulation for a human being but it is "strange" to the computer. We advocate the socalled: human centric computing, human centered computing, human computing, etc. that can help bridge this gap. Then, we present Zadeh's paradigm of computing with words (and perceptions) as a tool that may help bring computing closer to the human being by an explicit use of (quasi)natural language in many phases of computing, problem solving, etc. We indicate relations between the computing with words and human centric computing paradigms, and indicate - first - that the former can be viewed as an attempt at providing proper tools to implement the latter, and that both can play a crucial role in intelligent decision support systems. We show some implementations of using linguistic data summaries in a business context and show that they can be viewed as extremely human consistent data mining tools, notably for novice users.

Brief biography of the speaker: Janusz Kacprzyk is Professor of Computer Science at the Systems Research Institute, Polish Academy of Sciences, and Honorary Professor at the Department of Mathematics, Yli Normal University, Shanxi, China. He has been a visiting professor at many universities in the USA, England, Italy and Mexico. He is Academician (Member of the Polish Academy of Sciences). His research interests include intelligent systems, soft computing, fuzzy logic, decision making, decision analysis and decision support, database querying, information retrieval, data analysis, data mining, etc. He is President of IFSA (International Fuzzy Systems Association), and President of the Polish Society for Operational and Systems Research. He is Fellow of IEEE and IFSA. He received The 2005 IEEE CIS Fuzzy Pioneer Award for pioneering works on multistage fuzzy control, notably fuzzy dynamic programming, and The Sixth Kaufmann Prize and Gold Medal for pioneering works on the use of fuzzy logic in economy and management. His publication record is: 5 books, 30 volumes, 300 papers. He is Editor in chief of 3 Springer's book series, and a co-editor of one Springer book series, is on the editorial boards of ca. 30 journals, and was a member of the IPC at more than 200 conferences.

Plenary Lecture III

Clustering with an N-Dimensional Extension of Gielis Superformula

Professor Angel Kuri-Morales Instituto Tecnologico Autonomo de Mexico Mexico

Abstract: One of the most important issues regarding the analysis of raw data is the adequate identification of groups within such data. There have been many attempts to define a measure of what is "adequate" clustering. In all published cases, however, the adequateness of a cluster depends on a measure of distance chosen a priori. A metric or distance function is a function which defines a distance between elements of a set (for instance, one of the Ln family or Mahalanobis' distances have been utilized). Once a metric has been defined it remains to prove that the resulting clusters do, indeed, correspond to a proper classification. An obvious disadvantage of this methodology is, however, that in the space of the metric all clusters are hyperspherical. The shortcoming is that this fact immediately invalidates the attempt to find irregular shapes in such N-dimensional space. A metric induces a topology on a set but not all topologies can be generated by a metric. Topological unmetrisable spaces correspond, in this case, to a family of formulas developed originally by Gielis which he called a "superformula" (S). By replacing a metric by the elements of the hull defined by S we allow the search for more general shapes for our clusters. We report on the application of Vasconcelos Genetic Algorithm to find the parameters of S whose hulls encompass a large number of observations and the application of this method to data mining.

Brief biography of the speaker: Angel Fernando Kuri-Morales is an Engineer in Electronics by the Universidad Anahuac in Mexico City. He got a M.Sc. degree from the University of Illinois and a Ph.D. from Kennedy-Western University. He is the author of two text books and more than 70 articles published in international magazines and conferences. He is a member of the National System of Researchers (SNI). He won an international prize for the best solution to the "Iterated Prisoner's Dilemma" during the International Congress on Evolutionary Computation in 2000. He has been included in "Who is Who in the World" in 1988, 1998, 2000, 2002, 2003 and 2007. He received the best paper award during the 7th Industrial Conference in Data Mining, Leipzig, Germany. He has been president of several International Congresses, and invited speaker in many national and international scientific events. He belongs to the Evaluating Committee in the Area of Computer Science of CONACYT (the National Council for Science and Technology in Mexico). He was founder partner of Micromex, Inc. and IDET, Inc. and Director of Applied Research in the Center for Research in Computation of the National Polytechnic Institute. He is a Distinguished Lecturer of the Association for Computing Machinery (ACM) and member of the Scientific Committee of the World Scientific and Engineering Academy and Society (WSEAS). Currently he is the member of the Board of IBERAMIA, President of the Mexican Society for Artificial Intelligence and Professor in the Autonomous Technological Institute of Mexico (ITAM).

Plenary Lecture IV

Data Mining through Data Visualisation: Computational Intelligence Approaches

University of the West of Scotland UK

Abstract: One of the major tasks today is to create information from data. We do not mean to define information in terms of Shannon or indeed any other mathematical definition but information in terms of the subjective experience of a viewer of the data. People (and probably animals) are very good at pattern recognition; we are far more robust pattern matchers than any current computer programs. Increasingly however, we are dealing with high dimensional (and often high volume) data so to gain intuitions about a data set, we often project data onto low dimensional manifolds. One question which arises then, is what projections to low dimensional manifolds are best in order to present the projected data to a human user. We illustrate several projections which have been found by artificial neural network extensions of Hebbian learning. We then show examples of similar projections found by reinforcement learning; our rationale in this case is that we have agents interacting proactively with a database examining different projections and, without human intervention, getting rewards when the projections reveal some interesting structure. We then give examples of the same projections found by other computational intelligence methods such as the cross entropy method and artificial immune systems. We then examine projections to nonlinear manifolds and show that with a particular model of an underlying latent space, we may identify clusters in data sets when such clusters are not visible in any low dimensional linear projection. Finally we review different data representation techniques: we begin with parallel coordinates and point out some difficulties with this method before reviewing Andrews' Curves, a method from the 1970s which has only become truly practicable with the advent of modern desktop computers. An extension to this method came from Wegman and his colleagues in the 1990s. We also discuss a more recent extension and illustrate three dimensional projections of data samples dancing together.

Brief biography of the Speaker: Colin Fyfe completed his PhD in 1995 in artificial neural networks and has since supervised 16 completed PhDs in neural networks, evolutionary computation and probabilistic modelling. He is on the Editorial Board of several neural network and wider computational intelligence journals, and has been Honorary Chair of several international conferences. He has published over 300 refereed conference and journal papers, many book chapters and three books and is Series Co-Editor of the series "Computational Intelligence: Theory and Applications" with IGI International. He has given plenary talks at several international conferences and been visiting professor at universities in Australia, Korea, China, Taiwan and Spain. He is currently a Personal Professor at the University of the West of Scotland.

Plenary Lecture V

Formalisation and Verification in a Type-theoretic Framework

Professor Zhaohui Luo Dept. of Computer Science Royal Holloway, Univ of London UK E mail: <u>zhaohui@cs.rhul.ac.uk</u> Web site: http://www.cs.rhul.ac.uk/home/zhaohui/

Abstract: Dependent type theory provides a powerful logical calculus for computer-assisted formal reasoning. The associated technology of theorem proving has produced very useful tools, the so-called "proof assistants", for formal proof development both in verification of programs and in formalisation of mathematics. After giving an overview of the research field, I shall present a new type-theoretic framework LTT and explain its use in formalisation and verification. The particular features of the LTT framework include: LTT is a foundational calculus for formal reasoning with different logical foundations, establishing the basis for wider applications of the type theory based theorem proving technology. LTT employs a notion of "typed set", combining type-theoretical reasoning with set-theoretical reasoning in an effective way and supporting efficient proof development in formalisation and verification. As a promising framework, LTT has been used in several case studies, including the formalisation of Weyl's predicative mathematics and the analysis of security protocols.

Brief Biography of the Speaker: Zhaohui Luo is Professor of Computer Science at Royal Holloway, University of London. He has obtained the PhD degree in Computer Science at University of Edinburgh and worked as Lecturer, Reader and Professor in University of Durham, before going to Royal Holloway. Luo's research interests in the last twenty years have focussed on the study of type theory and its applications. His publications include two authored books on type theory and programming methodology.

Plenary Lecture VI

Probability Measures of Fuzzy Events and Linguistic Fuzzy Modelling - Forms Expressing Randomness and Imprecision

Professor Anna Walaszek-Babiszewska PhD, DSc, prof. at the Opole University of Technology, Department of Control and Computer Engineering, Poland E mail: <u>a.walaszek-babiszewska@po.opole.pl</u>

Abstract: Statistical methods have a long history of applications to data analysis and modelling in many of activities, as financial markets, business, optimal fields human control. Zadeh's theory of fuzzy systems, soft computing and computing with words gave possibilities of utilising many approaches to modelling, taking into account different types of uncertainties, especially, human knowledge and perception expressed imprecisely in linguistic categories. The sets of numerical data, collected in many real systems, and expert's experiences would be very useful to modelling both randomness and imprecision. Starting with the reminding the basic notions of probability of fuzzy events, we define probability distributions of a linguistic variable and a linguistic vector as well as a mean fuzzy value (a mean fuzzy set) of the linguistic variable. We formulate also a stochastic process with fuzzy states. The next, we try to modelling randomness and imprecision, using linguistic fuzzy models with weights of rules. A structure of the fuzzy model is predefined at the beginning of the task. Probability of fuzzy events has been used to formulate probabilities of the occurrence linguistic values of input and output variables in a product-space. Marginal probabilities of linguistic values of input variables are the weights of file rules. Conditional probabilities of linguistic values of the output variable are the weights in the consequence of elementary rules. The inference procedures are proposed and exemplary calculations are presented.

Brief Biography of the Speaker: Anna Walaszek-Babiszewska, at present, is a professor at the Opole University of Technology, Department of Control and Computer Engineering. She has obtained a MSc degree in Control Engineering from the Wroclaw University of Technology and a PhD as well as a DSc (Habilitation) degrees from the Silesian University of Technology in Gliwice, Poland. Her research interests include stochastic modeling, fuzzy systems, data analysis, and applications in technological and managerial situations. She has supervised 3 completed PhDs and reviewed 5 PhDs in technical and economic sciences. She has published 2 monographic books on stochastic and fuzzy modeling and over 80 scientific papers. She is a member of the Editorial Boards of Management (since 2000) and of Lecture Notes in Control and Computer Science (in 2003) of the University of Zielona Gora Press. She is a member of the Section of Cybernetics in Mining, Mining Committee of the Polish Academy of Sciences (since 1999).

AUTHOR INDEX

Abazi, L.	392	Datla, S.	214
Abderrahim, E.Q.	537	Dell'Aquila, C.	558
Aboutajdine, D.	537	Diaconita, V.	509
Adela, B.	532	Dinh, B.H.	232
Ahn, J.S.	182	Doo, M.K.	448
Ajofoyinbo, A.M.	301	Dozono, H.	257
Akle, S.	89	Drigas, A.S.	160
Al Aghbari, Z.	565	Dunnigan, M.W.	232
Al-Dafri, S.	357	Ebrahimi, S	582
Algorri, M.E.	89	Ekel, P.I.	245
Ali, M.	333	Ekonomou, L.	67
Alkoot, F.M.	351	El-Bahnasy, K.	170
Al-Qutaish, R.E.	101	Elhoussaine, Z.	537
Al-Sarayreh	101	El-Korany, A.	170
Ananthanarayana, V.	454	Enokizu, H.	41
Anna, W.B.	207	Faraj, K	489
Aziz, A.A.	482	Franti, E.	116, 128, 276, 295
Badiru, A.B.	301	Fu, H.	576
Balbino, E.S.	245	Fujiwara, R.	257
Balicki, J.	327	Fyfe, C.	31, 176, 238
Ball, A.	470	Ganeshan, K	442
Bara, A.	509	Govindarajan, M.	476
Barbakh, W.	238	Gu, F.	470
Bharadwaj, K.K.	500	Gulevsky, Y.	541
Bobadilla, E.A.	343	Gunturu, H.	214
Bologa, R.	527	Harada, F.	409
Botha, I.	509	Hathhayi, F.I.	430
Brook, S.	565	Havas, C.	423
Burdescu, D.D.	396	Hendriks, T.	434
Calmet, J.	365	Hiang Sim, A.T.	515
Camus, M.	423	Homma, N.	379
Chandrasekaran, RM	476	Hsu, S.C.	220
Chang, F.M.	122	Hu, N.	470
Chen, S.S.	182	Ijaz, K.	148, 160
Chen, Y.H.	338	Indrawan, M.	515
Cheng, J.H.	182	Ion, L.	532
Chiang, Y.C.	338	Iqbal, A.	78
Chuang, Y.W.	182	Ishibashi, T.	379
Corcau, J.I.	182	Iuliana, B.	532
Corne, D	226, 289	Jehangir, S.	465
Cosmin, C.	571	Kadir, R.A.	460
Dascalu, M.	116, 128, 276, 295		
··· 7	,,,		

Vadrin A	392		NA1-1-1 NA	357, 527,	549
Kadriu, A.			Mukbil, M.		549
Karatsoris, M.	309		Murakami, S.	41	
Khalid, T.	101		Nachiappan, S.	269	
Khayat, O.		2, 109, 193, 198	Navarro, P.	25	
Khosravi, M.H.	193, 19	98	Nawaz, A.	333	
Kim, J.H.	263		Novac, M.	430	
Kohli, M.	250		Novac, O.	430	
Kokol, P.	62		Oh, K.	165	
Komiya, S.	41		Oikonomou, D.S.	67	
Koo, B.	165		Olunloyo,V.O.S	301	
Kulkarni, A.	214		Ozkul, T.	357	
Kumar, P.	454		Parkhomenko, D.	541	
Kumar, R.	454		Pastore, S.	403	
Kumasaka, M.	41		Pavlopoulos, J.	160	
Kuusik, R.	135		Phaal, R.	417	
Larue, O.	423		Politis, D.	309, 521	
Lee, J.	165		Probert, D.	417	
Lee, J.H.	142		Puri, P.	250	
Leen, G.	31		Qin, G.	470	
Lefons, E.	558		Qureshi, T.	333	
	538 521		-	269	
Linardis, P.			Ramanathan, R.		
Lind, G.	135		Ramasmy, K.	50	
Lucian-Ionel, C.	571 500		Reay, D.S.	232	
Lungu, I.	509		Rollings, G.	289 527	
Lungu, M.	189		Sabau, G.	527	
Luo, S.	226		Sapiyan, M.	50	
Lupu, A.R.	527		Saroj	500	
Malikov, A.	541		Sebe, G.	295	
Manole, V.	532		Sembok, T.M.	454	
Manzoor, U.	148, 15	54	Sepahi, A.A.	582	
Maret, P.	365		Seyedtabaii, R.	495	
Margounakis, D.	521, 30)9	Seyedtabaii, S.	495	
Marius, C.	571		Shahdoosti, H.R.	56, 72,	109, 193, 198
Masodi, M.	482		Shahid, A.A.	148	
Mihaescu, M.C.	396		Shimakawa, H.	409	
Milea, L.	116, 12	8, 276, 295	Sohn, S.Y.	95, 142,	182, 263, 448
Mircea, G.	549		Srinivasan, B.	515	
Moe, R.E.	385		Stefan, G.	116, 128,	276
Mohamed, A.	482		Stergiopoulos, C.	553	
Moon, T.H.	95		Stiglic, G.	62	
Morales, A.K.	343		Stoenescu, E.	189	
Mori, Y.	409		Stoian, M.	276, 295	
Motlagh, A.J.		2, 109,	Subercaze, J.	365	
MuFahiem, M.A.	465	_, 107,	Takahashi, T.	257	
19101 anitonii, 191.7 1 .			1 anana5111, 1.	231	

Takei, K.	379	Vladutiu, M.	430	
Tangorra, F.	558	Vouros, G.	160	
Tien-Chin, W.	318	Vrettaros, J.	160	
Tortosa, L.	25	Wang, T.C.	220,	338
Tria, F.D.	558	Wu, Y.	176	
Triantis, D.	553	Yaacob, M.	78	
Tsiakas, P.	553	Ying-Ling, L.	318	
Uenosono, K.	41	Yoon, B.	417	
Vallianatos, F.	553	Yousoof ,M.	50	
Vari-Kakas, S.	430	Zakaria, S.	482	
Velicanu, M.	509	Zaman, H.B.	460	
Verlic,M.	62	Zamora, A.	25	
Vicent, J.F.	25	Zhang, Y.	470	
Viducic, V.	371	Zimmermann, M.	89	
Vlad, D.	532			