Editors: Prof. Dr. Jurij Krope, Univ. of Maribor, Slovenia Prof. Dr. Laszlo Garbai, Technical University of Budapest, Hungary Prof. Dr. Dorde Kozic, Univ. of Belgrade, Serbia Prof. Dr. Darko Goricanec, Univ. of Maribor, Slovenia Dr. Ioannis Sakellaris, National Technical University of Athens, Athens, Greece

SA ENERGY and ENERGY AND III

Published by WSEAS Press www.wseas.org

Proceedings of the 3rd IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE '08)

> University of Cambridge, Cambridge, UK, February 23-25, 2008

> > ISBN: 978-960-6766-43-5 ISSN: 1790-5095

Energy and Environmental Engineering Series A Series of Reference Books and Textbooks

ENERGY and ENVIRONMENT III

Proceedings of the 3rd IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE'08)

University of Cambridge, Cambridge, UK, February 23-25, 2008

Energy and Environmental Engineering Series A Series of Reference Books and Textbooks

> Published by WSEAS Press www.wseas.org

ISBN: 978-960-6766-43-5 ISSN: 1790-5095

ENERGY and ENVIRONMENT III

Proceedings of the 3rd IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE'08)

University of Cambridge, Cambridge, UK, February 23-25, 2008

Energy and Environmental Engineering Series A Series of Reference Books and Textbooks

Published by WSEAS Press www.wseas.org

Copyright © 2008, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html

ISBN: 978-960-6766-43-5 ISSN: 1790-5095

World Scientific and Engineering Academy and Society

ENERGY and ENVIRONMENT III

Proceedings of the 3rd IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE'08)

University of Cambridge, Cambridge, UK, February 23-25, 2008

Editors:

Prof. Dr. Jurij Krope, University of Maribor, Slovenia Prof. Dr. Laszlo Garbai, Technical University of Budapest, Hungary Prof. Dr. Dorde Kozic, University of Belgrade, Serbia Prof. Dr. Darko Goricanec, University of Maribor, Slovenia Dr. Ioannis Sakellaris, National Technical University of Athens, Athens, Greece

Committee:

Sasa Saljnikov, SERBIA Lajosz Barna, HUNGARY Andrej Krope, SLOVENIA Tina Krope, SLOVENIA Danijela Dobersek, SLOVENIA Nicolas Abatzoglou, CANADA Beghidja Abdelhadi, FRANCE Wael Al-hasawi, KUWAIT Zakaria Al-Qodah, JORDAN Omar Othman Badran, JORDAN Pandelis Biskas, GREECE Tomas Bodnar, CZECH REPUBLIC Luis Borges, PORTUGAL Corneliu Botan, ROMANIA Arturo Bretas, BRAZIL Fernando Carapau, PORTUGAL Sombat Chuenchooklin, THAILAND Paulo Correia, PORTUGAL Abdel-Karim Daud, ISRAEL Paul Deuring, FRANCE Yue Dong, CHINA Jassim Gaeb, JORDAN Mohamed Hassan, KUWAIT Iraj Hassanzadeh, IRAN Toshiaki Hishida, JAPAN Seied Hossein, Hosseiny IRAN Chun Chang Huang, CHINA Pei-Hwa Huang, TAIWAN Niranjan Kumar Injeti, INDIA

Lucio Ippolito, ITALY J. Janela, PORTUGAL C.M. Kao, TAIWAN Sameer Khader, ISRAEL Stanislav Krasmar, CZECH REPUBLIC Rainer Krebs, GERMANY Petr Kucera, CZECH REPUBLIC Sonia Leva, ITALY Bugaru Mihai, ROMANIA Ebrahim Mussavi, IRAN Jiri Neustupa, CZECH REPUBLIC Panos Papanicolaou, GREECE Hassan Rahimzadeh, IRAN Dong-Hee Rhie, KOREA Nasreddine Saadouli, KUWAIT Maria Specovius-Neugebauer, GERMANY Frank Stagnitti, AUSTRALIA Mladen Stanojevic, SERBIA Heiki Tammoja, ESTONIA Juhan Valtin, ESTONIA Werner Varnhorn, GERMANY T. Y. Yeh, TAIWAN Ruey-Fang Yu, TAIWAN Chen Yuchen, CHINA Mohamed Zahran, EGYPT Jiri Zdenek, CZECH REPUBLIC Gaetano Zizzo, ITALY Juan Zolezzi Cid, CHILE

Preface

This book contains proceedings of the 3rd IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE'08) which was held in University of Cambridge, Cambridge, UK, February 23-25, 2008. The first EE conference was held in Chalkis, Greece in 2006.

The World Conference of IASME and WSEAS on ENERGY and ENVIRONMENT is the internationally recognized Forum for the dissemination of the latest advances on Energy Systems, Renewable Energy, Power Systems, Electric Energy etc as well as their impact and their interaction with other areas of Environmental Engineering, Civil Engineering, Chemical Engineering, Mechanical Engineering, Electrical Engineering and Applied Physics. The various WSEAS conferences on Energy has been successfully held each year since 2001 and has produced more than 30 volumes of Proceedings while the best papers and the invited papers after extension and after peer review from 4 international referees, are published in WSEAS Journals covered by all the major scientific indexes.

The 3rd IASME/WSEAS International Conference on ENERGY and ENVIRONMENT aims to disseminate the latest research and applications in the afore mentioned fields. The range of topics covered are listed on the Call For Papers. The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers.

The IASME/WSEAS International Conference on ENERGY and ENVIRONMENT attracts each year a large number of well-established and leading researchers in the aforementioned areas as well as Modern and Advanced Applications in our Real Life.

The meetings have always had a special appeal to young researchers and are characterized by a friendly atmosphere in which delegates at different stages of their careers can talk to each other. Scientists within all the areas of Energy Technologies, Environmental Science and Engineering will benefit from attending the meeting. As a conclusion, the conference offers to the engineers and scientists a unique forum for establishing new collaborations within present or upcoming research projects, exchanging useful ideas, presenting recent research results, participating in discussions and establishing new academic collaborations, linking university with the industry.

Expanded and enhanced versions of papers published in these conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, Compendex, INSPEC, CSA see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal).

We cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals.

The Editors

Table of Contents

Plenary Lecture 1: Exergy as a Tool for Sustainability Marc A. Rosen	13
Plenary Lecture 2: Minimum Energy for an Improved Environment: Electrical Machine Design and Control for the Future Roy Perryman, Stephen Dodds	14
Plenary Lecture 3: Worldwide Energy Demand and Environmental Safeguard Francesco Muzi	15
Plenary Lecture 4: The Methanol Fuel of Latter Petroleum Era Wu Yuji	16
Plenary Lecture 5: Chemistry of non-precipitation components of wet atmospheric pollutant deposition with Poland as an example <i>Zaneta Polkowska, Mieczyslaw Sobik</i>	17
Plenary Lecture 6: Solar Energy and the Global Warming Vassilis Gekas	19
Part 1: Energy Solar Absorption Refrigeration System using New Working Fluid Pairs Jasim M. Abdulateef, Kamaruzzaman Sopian, M. A. Alghoul, Mohd Yusof Sulaiman, Azami Zaharim, Ibrahim Ahmad	23
Factors Decomposition of Energy Intensity: the case of Liaoning province He Yong-Xiu, Tao Wei-Jun, Li Yan, Zhang Song-Lei, Li Fu-Rong	29
Computational analysis of heat and water transfer in a PEM Fuel Cell Ebrahim Afshari, Seyed Ali Jazayeri	35
Investigation of Energy-efficient 10 KVA Switchable Transformer Sam. Ali, Jin. Liu	41
Photocatalytic degradation of phenol in aqueous phase with TiO2 immobilized on three different supports with a simple method <i>S. N. Hosseini, M. Borghei, M. Vossoughi, N. Taghavinia</i>	46
Measurement of Spray Characteristics of Coaxial Jet Spray Flames under High Pressure Mariko Nakamura, Seung-Min Hwang, Yoshinori Nakao, Daichi Nishioka, Jun Hayashi, Fumiteru Akamatsu	51
Performance Assessment and Improvement of an Existing Air Conditioning System of a Supermarket: A Case Study on Bi-Lo Supermarket <i>M. Hansen, M. G. Rasul</i>	55
Energy Efficiency in Croatian Residential and Service Sector – Analysis of Potentials, Barriers and Policy Instruments Vesna Bukarica, Zeljko Tomsic	61
Energy Conservation and Power Consumption Analysis in China Based on Input-output Method He Yong-Xiu, Zhang Song-Lei, Tao Wei-Jun, Li Fu-Rong	67
Thermal Analysis of Nickel/Metal (Ni/MH) Hydride Battery during Charge Cycle Nabi Jahantigh, Ebrahim Afshari	73

Energy Saving Opportunities through Heat Recovery from Cement Processing Kilns: A Case Study I. Al-Hinti, A. Al-Ghandoor, A. Al-Naji, M. Abu-Khashabeh, M. Joudeh, M. Al-Hattab	79
Effect of demand-side management on the feasibility of highperformance windows U. Atikol, Hossein Assefi, M. Reza Azizian, Maryam Gharebaghi	84
Exergy as a Tool for Sustainability Marc A. Rosen	90
Heat Exchanger Exergoeconomic Lifecycle Cost Optimization Liaquat Ali Khan, Ali El-Ghalban	99
Assessing Challenges in Developing Sustainable Adaptation Strategies by Considering Climate Changes	107
S. M. Mofidi, A. M. Moradi, M. Akhtarkavan, H. Akhtarkavan	
Several Test Results on Earthing-Resistance-Estimation Instrument Hitoshi Kijima	113
Energy Conservation Opportunity by the Use of Aerogel Nanomaterials in Steam Pipes Sourena Sattari, Roghayeh Lotfi, Vahideh Baharmast	118
Feasibility of a Hybrid Cooling System in a Thermal Power Plant C. R. Williams, M. G. Rasul	124
Structural, energy and environmental aspects in Iranian oil refineries Sourena Sattari, Akram Avami	130
A Concise Review of Exergy-Based Economic Methods Marc A. Rosen	136
Assessing Sustainable Adaptation of Historical Buildings to Climate Changes of Iran S. M. Mofidi, A. M. Moradi, M. Akhtarkavan	145
Analysis of Ultimate Energy Consumption by Sector in Islamic Republic of Iran B. Farahmandpour, I. Nasseri, H. Houri Jafari	151
Slip Flow Irreversibility Effects and Conjugate Heat Transfer in a Counterflow Heated Microchannel	158
E. O. B. Ogedengbe, G. F. Naterer, M. A. Rosen	
Energy-Concious and Sustainable Architectural Principles for Cold Environments S. M. Mofidi	165
Part 2: Environment Minimum Energy Forced Dynamic Position Control of PMSM Drives Stephen J. Dodds, Gunaratnam Sooriyakumar, Roy Perryman	173
Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks P. Ledesma, C. Gallardo	180
Optimal Renewable Energetic System Placement Based on Local Microclimate Emil Pop, Monica Leba, Camelia Tabacaru Barbu, Livia Buzdugan	186
Energy Conservation Measures in an Institutional Building by Dynamic Simulation Using DesignBuilder	192

М.	М.	Rahman,	М.	G.	Rasul,	М.	М.	Κ.	Khan
----	----	---------	----	----	--------	----	----	----	------

Characterization of Energy Production and Health Impact in Romanian context Diana Mariana Cocarta, Adrian Badea, Tiberiu Apostol	198
Screening of Options for VOC Emissions Reductions in Manufacturing Office Furniture Partitions Frank S. Luisser, Marc A. Rosen	204
Environmental Effects of Irregular Extracting of Gravel from River Beds Siamak Boudaghpour, Seyyed Arman Hashemi Monfared	213
Operating Reserves Provided by Distributed Generation Francisco D. Moya Ch., Duvier Bedoya Bedoya, Gilberto De Martino Jannuzzi, Luiz Carlos Pereira Da Silva	219
A Fast Method for Frequency Response Calculation in Under Frequency Load Shedding Scheme Abolfazl Salami, Hamid Abdi	225
A scenario reducing the risks of returning earthquakes in Adapazari Taeke M. De Jong	229
Biodiversity and health taken as the basic problems in GuiYang Taeke M. De Jong	235
SmartGrids and distributed generation: the future electricity networks of the European Union Francesco Muzi	243
The analysis of precipitation variation and quantiles in Iran Pari Sima Katiraie Boroujerdy	248
Simulation of Concentration Distributions of Primary Gaseous Pollutants Using Air Quality Modeling System in Bang Pakong Area, Thailand Chatchawan Vongmahadlek, Meigen Zhang, Boonsong Satayopas, Pham Thi Bich Thao	254
Process analyses and monitoring system in Labview Data Logging and Supervisory Control Module of the cryogenic pilot plant for tritium removal Carmen Maria Moraru, Iuliana Stefan, Ovidiu Balteanu, Ciprian Bucur, Liviu Stefan, Anisia Bornea, Ioan Stefanescu	260
Volatile Organic Compounds Monitoring in Southern Kuwait A. A. Ramadan, M. Al-Sudairawi	264
Three dimensional blade to blade flow Derek Payne, Vasos Pavlika	270
Chemical And Physical Property Of Rice Straw Waste And Hospital Sewage Sludge In Turned Windrow Aeration System Khajornsak Sopajaree, Apisit Sancom	276
Zero emissions systems in the food processing industry Uyen Nguyen Ngoc, Hans Schnitzer	284
Environmental perspective in Iran's energy consumption sectors Akram Avami, Bahare Farahmandpour	293
Geometry of Branching Biological Structures Ioanna Paraskaki, Minas Voulgaridis, Vassilis Gekas	298
Reuse Building Materials Davorin Kralj, Mirko Markic	303

Simulation of Steam Unit Start up by Combustion Units Abolfazl Salami, Shahram Jadid	307
An Inventory of Primary Gaseous Emissions from Thailand with Spatial and Temporal Allocation Profile	313
Chatchawan Vongmahadlek, Pham Thi Bich Thao, Boonsong Satayopas, Narisara Thongboonchu	
Novel Strategy for Compensating Current Determination in Single Phase Active Power Filters W. Hosny, B. Dobrucky	319
Grid Computing Technology Enhances Electrical Power Systems Implementations R. Al-Khannak, B. Bitzer	324
The contribution of asynchronous loads to pollutant and greenhouse gas emissions Francesco Muzi, Luigi Passacantando	336
Using real-time loss management to improve the operating efficiency of power distribution systems Stefano D'Ottavi, Francesco Muzi	341
Estimation of Partial Discharge Inception Voltages due to Voids in Power Cables M. U. Zuberi, A. Masood, M. F. Khan, Ekram Husain, A. Anwar	345
Chemistry of non-precipitation components of wet deposition with Poland as an example Saneta Polkowska, Mieczyslaw Sobik	349
Natural and Human Impact on Pollutant Deposition in Mountain Ecosystems with the Sudetes as an Example <i>Mieczyslaw Sobik, Marek Blas</i>	355
Surge Over-Voltage Protection For Substations Mohamed Adel Abdallah	360
Supervisory control using EIB – KONNEX technology: A sensor network protocol enabling a holistic and environmental approach in architecture <i>John K. Sakellaris</i>	365
Thermal Modelling for Permanent Magnet Synchronous Motors Roy Perryman, Gunaratnam Sooriyakumar, Stephen J.Dodd Sooriyakumar	379
The Evaluation of performances of installations by power plants from Romania concerning professional risks Aurica Suvergel, Alice Raducanu, Angela Stanca	386
Impact Evaluation of Electrical Equipments on Human Health Alice Raducanu, Aurica Suvergel, Angela Stanca, Marin Stefan, Cornelia Marcolt, Corneliu Neagu	392
Floristic Diversity, Composition and Richness in Relation to Topography of a Hill Dipterocarp Forest in Malaysia I. Saiful, I. Faridah-Hanum, J. Kamaruzaman, A. Latiff	398
Optimal Placement Of Facts Devices S. Durairaj, B. Fox	407
An Ex Ante Evaluation Of Sustainable Development: The Case Of "Kolubara" Mining Basin Slavka Zekovic, Miodrag Vujosevic	412

IKONOS Sensing Data for Estimating Cabbage Production in Cameron Highlands, Malaysia Kamaruzaman Jusoff	421
On applying the systemic thought in environmental economics: Greek economy trends until 2030 based on a model proposed by the Nobel laureate W. Leontief incorporating environmental indicators <i>John K. Sakellaris, Nikolaos A. Mylonas</i>	424
Drive Systems in Underground Metro Saving Energy Cornelia Aida Bulucea, Doru Adrian Nicola, Andreea Brandusa, Constantin Brandusa	433
Environmental Protection in Malaysia with Sustainable Forest Management Practices Dato' Hj. Dahlan Hj. Taha, Hj. Kamaruzaman Jusoff	439
Part 3: Renewable Energy Sources Doubly-Fed Induction Generator Torque in Wind Turbines Jurica Smajo, Dinko Vukadinovic	451
Design and Simulation of a Small Scale Solar Powered Desalination System J. R. Schrader, M. G. Rasul	457
Development of Renewable Energy in European Union Andreea Zamfir	464
Electric Energy Savings and Light Guides Jitka Mohelnikova	470
Energy efficiency assessment of an aeolic plant installation in the Livorno harbour: a station vs. model comparison <i>C. Busillo, F. Calastrini, G. Gualtieri, B. Gozzini</i>	474
Effects of Blade Configurations on Flow Distribution and Power Output of a Zephyr Vertical Axis Wind Turbine J. O. Ajedegba, G. F. Naterer, M. A. Rosen, E. Tsang	480
Preliminary Life Cycle Assessment of Nuclear-Based Hydrogen Production Using Thermochemical Water Decomposition Luthfi I. Lubis, Ibrahim Dincer, Marc A. Rosen	487
Solar Powered Unitized Regenerative Fuel Cell System Salwan S.Dihrab, Kamaruzzaman Sopian, Nowshad Amin, M. M.Alghoul, Azami Zaharim	495
Optimization of Renewable Energy Hybrid System by Minimizing Excess Capacity Juhari Ab. Razak, Kamaruzzaman Sopian, Yusoff Ali, Mohammad Ahmed Alghoul, Azami Zaharim, Ibrahim Ahmad	500
Sizing of Isolated Wind-Electrolyzer Systems by use of a Probalistic Method Terje Gjengedal, Lars Nesje Grimsmo, Magnus Korpaas	505
Potential of Power Generation from a Wind Energy Conversion System in Malaysian Coastal Area <i>M. Z. Ibrahim, R. Zailan</i>	512
Residential photovoltaic energetic system, optimized with an FPGA based control unit Lucian Milea, Marin Dragulinescu, Orest Oltu, Monica Dascalu, Marius Stoian	518
Fixed And Variable Speed Induction Generators For Real Power Loss Minimization S. Durairaj, D. Flynn, B. Fox	523

Solar Radiation Maps From Satellite Data For A Tropical Environment – Case Study Of Malaysia Ayu Wazira Azhari, Kamaruzzaman Sopian, Azami Zaharim, Mohamad Al Ghoul	528
Evaluation Of 1D And 2D Texturing Of Monocrystalline Solar Cell F. Jahanshah, K. Sopian, I. Ahmad, M. Y. Othman, Azami Zaharim, S. H. Zaidi	534
Parametric Analysis of multipurpose solar adsorption system- cooling and heating M. A. Alghoul, M. Y. Sulaiman, K. Sopian, B. Z. Azmi, M. Abd. Wahab, A. Zaharim	538

Exergy as a Tool for Sustainability

Professor Marc A. Rosen Founding Dean Faculty of Engineering and Applied Science University of Ontario Institute of Technology Oshawa, Ontario, Canada also: President-Elect, Engineering Institute of Canada

Abstract: We conventionally use energy-based efficiency measures to assess how well energy systems perform. Energy-based measures of merit, however, do not really indicate how nearly performance efficiency approaches the ideal. In fact, energy measures can lead to confusion and, in some instances, to wrong decisions and wasteful allocations of resources. Exergy analysis, which is based on the second law of thermodynamics, avoids the difficulties associated with energy methods, and allows efficiencies to be clearly understood and measures to improve efficiency to be properly assessed. In addition, exergy provides insights into environmental impact and ecology, as well as economics. When all facets of exergy methods are viewed together, exergy is seen to provide an extremely useful tool for understanding, assessing and achieving sustainability, within energy and other systems. In this presentation, the exergy concept and its application as an analysis and improvement tool, and its impact on efforts to achieve sustainability, are described. Various examples are used to illustrate the benefits of exergy.

Brief Biography of the Speaker: Dr. Marc A. Rosen, P.Eng. is Professor and founding Dean of the Faculty of Engineering and Applied Science at the University of Ontario Institute of Technology in Oshawa, Canada. He is also President-elect of the Engineering Institute of Canada and has served as President of the Canadian Society for Mechanical Engineering.

With over 50 research grants and contracts and 400 technical publications, Dr. Rosen is an active teacher and researcher in thermodynamics, energy technology (including cogeneration, district energy, thermal storage and renewable energy), and the environmental impact of energy and industrial systems. Much of his research has been carried out for industry, and Dr. Rosen has also worked for such organizations as Imatra Power Company in Finland, Argonne National Laboratory near Chicago, and the Institute for Hydrogen Systems near Toronto. Dr. Rosen has received numerous awards and honours, and is a Fellow of the Engineering Institute of Canada, the Canadian Academy of Engineering, the Canadian Society for Mechanical Engineering, the American Society of Mechanical Engineers and the International Energy Foundation.

Minimum Energy for an Improved Environment: Electrical Machine Design and Control for the Future

Professor Roy Perryman Ford Professor of Engineering Education, University of East London E-mail: R.Perryman@uel.ac.uk

Professor Stephen Dodds Professor of Control Engineering, University of East London E-mail: s.j.dodds@uel.ac.uk

Abstract: This paper presents a vision for the future design of electrical machines and the systems in which they are employed with a view to achieving a contribution to the overall energy consumption minimisation throughout industry. For example, developments in rare earth magnetic materials have enabled new designs of high power density, high efficiency machines. Computationally demanding design techniques such as finite elements and genetic algorithms are becoming practicable with advances in software and digital processors. This is enabling the progress of more sophisticated machine designs with special rotor and stator geometries yielding optimal flux paths, high torque and minimal ripple outputs. To achieve the aforementioned energy consumption minimisation, not only is the electrical machine design important but also the consideration of the energy losses in the systems employing the electrical machines. Automatic control will play an increasingly important role in this regard. Optimal control strategies, especially those involving nonlinearities, are of an open loop structure and hitherto have been largely of academic interest in view of their sensitivities to parametric errors and external disturbances. Advances in easily attained computational power, however, are enabling practicable closed loop versions of these optimal controls that overcome these limitations to be created, with the aid of artificial intelligence. This paper includes several applications in which combined electrical machine design for maximum efficiency and system design for minimum energy usage is of paramount importance.

Brief biography of the speakers: Roy Perryman graduated with a BSc(Hons) in Electrical Engineering in 1969 and gained a PhD in Magnetic Materials in 1974. He spent 17 years in the electrical and electronics industry working with AFA Minerva (EMI) Ltd, Bowthorpe Controls, and Walter Jones & Co Ltd. In 1988 he joined the University of Greenwich and became Associate Head of the School of Engineering. He was subsequently appointed as Head of the School of Electrical & Manufacturing Engineering at the University of East London in 1996 and became Ford Professor in Engineering Education in 2004. He is a Chartered Engineer and Fellow of the Institution of Engineering and Technology (FIET). His research interests are in the design and control of electrical machines and drive systems, magnetic materials, condition monitoring and the application of neural networks.

Stephen Dodds received a BSc (Hons) in Electrical Engineering in 1967, an MSc in Systems Engineering in 1970 and a PhD in the Control of Flexible Spacecraft in 1985. He spent 13 years as an attitude and orbit control systems engineer on European space programmes and originated new digitally implemented spacecraft attitude control. In 1985 he was appointed Reader in Control Engineering at the University of East London (UEL) and subsequently expanded his control systems research to encompass electrical drives. In 1997 he was made an Academician of the Academy of Non-linear Sciences of Russia and became Professor of Control Engineering at UEL.

Worldwide Energy Demand and Environmental Safeguard

Professor Francesco Muzi Department of Electrical Engineering and Computer Science University of L'Aquila Italy E-mail: muzi@ing.univaq.it Web site: http://www.diel.univaq.it/people/muzi/

Abstract: The great increase in the world's population along with the improvement in life standards of poorer countries will imply a rapidly growing energy demand in the next few decades. Possible scenarios foresee an increase of as much as 100% in global energy demand from the present to 2050, mainly concentrated in Asian countries as China, India, Indonesia, and in southern Africa. In this situation, there will be two main challenges to face: on the one hand, to find and ensure the energy resources necessary to support both the continuing growth of industrialised countries, and the rising demands of developing countries; on the other hand, to mitigate the already occurring climate changes and assure environment safeguard. In order to meet these crucial requirements, innovation and new technologies will play a fundamental role in our future. New, enlightened policies can effectively establish important opportunities for countries willing to face the challenge. From this point of view, Germany and Spain have already undertaken the path of renewable energy since a few years ago; the UK has recently announced the development of a new, important research project aimed at CO2 reduction. Moreover, both the European Union and the U.S.A. have recently enacted a number of directives that clearly point in this direction. As regards this global competition, the present lecture will mainly discuss the combined role of the following topics: the development of renewable energy sources, the efficiency in energy end-uses, and frontier technologies in electric power engineering. In this context, emphasis will be given also to smart-grids and distributed generation for an innovative, effective and comprehensive system of electric energy production and distribution.

Brief biography of the speaker: Francesco Muzi is a professor of Power Systems at the University of L'Aquila, Italy, where he has also the scientific responsibility for the Power System Group. His main research interests concern Power systems transients and dynamics, Power quality in distribution systems, Power system reliability, Electromagnetic analysis, and Power systems diagnostics and protection. In these fields, he authored or co-authored over 100 scientific papers published in reviewed journals or presented at international conferences.

For his contribution on Lightning Induced Overvoltages, he received a mention in the book of P. Chowdhuri "Electromagnetic Transients in Power Systems", John Wiley & Sons, New York and participated to the outline of the "IEEE Guide for improving the lightning performance of electric lines", IEEE Standards Department, New York. He has also a patent for an industrial invention, namely "Power system controlled by a microprocessor".

He is a regional chairman of the Italian National Lighting Society and was a chairman or keynote lecturer in a number of international conferences organized by ISSAT (International Society of Science and Applied Technologies) and WSEAS.

He is a technical reviewer for the following international journals: IEEE Transactions on Power Delivery, Electric Power Systems Research by Elsevier Science, IET Generation, Transmission & Distribution.

The Methanol Fuel of Latter Petroleum Era

Professor Wu Yuji The President of China Luohe Petrochemical Group China E-mail: china.energy357@yahoo.com.cn

Abstract: What I am going to talk about is the methanol fuel of latter petroleum era. The latter petroleum era is coming, the environmental problems is growing, the department of sci-tech, energy, environmental protection in the world even the United Nations and Governments of many countries in the world are highly concerned about oil clean alternative energy, All kinds of alternative energy is also competing for the replacable right.

In the face of this situation, this article will elucidate the view of "Only methanol fuel is the most perfect fuel in the early of latter petroleum era through scientific data analyses.

Brief biography of the Speaker: Wu Yuji, Professor, senior engineer, he is the vice chairman of China Small-Medium Enterprise Association, vice executive director of Small-Medium Enterprise Committee in China Petrochemical Industry Association, vice chairman of China Alcohol Ether Fuel and Alcohol Ether Clean Automobile Special Interest Committee, a researcher of China Administration Section Institute Academic Committee, president of China Luohe Petrochemical Group Holding CO.,LTD., president of China Zhongyou Energy Technology CO.,LTD., famous expert on alcohol ether fuel in China, "the father of china methanol fuel", "the founder of china large-percentage alcohol ether fuel".

Chemistry of non-precipitation components of wet atmospheric pollutant deposition with Poland as an example

Professor Zaneta Polkowska Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk, Poland E-mail: chemanal@pg.gda.pl

Professor Mieczyslaw Sobik Department of Meteorology and Climatology, Institute of Geography and Regional Development, University of Wroclaw, 8 Kosiby Street, PL-51670, Wroclaw, Poland

Abstract: Except of dry and precipitation induced wet deposition, there also exist other pathways of atmospheric pollutants flux into the ground. These are different kinds of atmospheric deposits in the form of hydrometeors, which do not belong to precipitation category, such as: dew, hoarfrost, rime and liquid fog deposit. Due to the fact that such hydrometeors are formed within near-ground layer of air, where emission takes place, the observed pollutant concentrations are significantly higher than those typical for atmospheric precipitation. In this paper the results of monitoring of atmospheric deposits chemistry in some selected sites in Poland during the period between 2004 and 2007 are presented. The average total ionic content (TIC) of dew, hoarfrost, liquid fog and rime was 219, 283, 110 and 105 meq/l respectively, while typical TIC value for precipitation was 37 meq/l. In all types of atmospheric deposits different ions play an important role: Ca2+ and SO42- in dew, NH4+ and SO42- in rime, Na+ and Cl- in hoarfrost, NO3- in fog. Acidic (pH<5.0) and strongly acidic (pH<4.0) atmospheric deposits, such as rime and fog, were observed only in the mountainous regions. The average equivalent ratio of Cl-/Na+ for hoarfrost, rime and fog samples was apparently close to the seawater value, whereas for dew ones in all stations this ratio was significantly higher in comparison with seawater. Very high values were observed for dew samples collected in urban inland and coastal stations, where the concentration level of Cl- was 3 to 4 times higher than Na+. The higher contribution of sodium ions (in comparison with chloride ions) was reported only in dew samples collected at rural inland stations. The NO3-/SO42- ratio in hoarfrost, rime and dew samples ranges over a wide interval, but in general concentration of SO42- is higher than NO3-. Only in fog samples, the average values of this ratio are close to 1, what means, that NO3- and SO42- ions are on the similar concentration level in this type of atmospheric deposit. The lowest values of nss-SO42-/SO42- and nss- Ca2+/Ca2+ were observed only in hoarfrost and rime in lowland urban station localized close to the Baltic coast, because of high contribution of SO42- and Ca2+ originated from sea-salts. When you take into account both concentration and volume of deposited water, dew and hoarfrost become a significant component of wet deposition over the lowland part of the territory of Poland, responsible for additional 50-75% deposited pollutants when compared with the precipitation itself. In the mountains of southern Poland, fog deposition in the form of rime and liquid deposit tend to be more important pathway than dew and hoarfrost. At numerous high elevated and well exposed sites pollutant deposition via fog droplets even exceeds deposition via precipitation, which leads to destructive environmental results, particularly in mountain forest ecosystems.

Brief Biography of the Speakers: Dr eng. Zaneta Polkowska is a researcher in Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland; specialist in modern analytical techniques applied for determination of atmospheric pollutants (used in environmental protection). Nowadays, her main interests are : the presence of pollutants and their concentration levels in atmospheric precipitation and runoff waters in relation to the prevailing meteorological conditions.

Dr Mieczyslaw Sobik is a researcher in Department of Meteorology and Climatology, University of Wroclaw, Poland; specialist in mountain climatology and deposition processes of atmospheric pollutants. His main interest is the role of fog on water balance and pollutant deposition in mountain forest ecosystems of Central Europe.

Solar Energy and the Global Warming

Professor Vassilis Gekas Department of Environmental Engineering Technical University of Crete GR 731 00 University Campus, Chania GREECE E-mail: vassilis.gekas@enveng.tuc.gr Website: http://www.enveng.tuc.gr/Labs/efmtfd lab en.htm

Abstract: The Sun, our Sun, is our main source of energy. But Sun has also the sunspots. Energy is the light side of the Sun-planet interaction, the shadow is a bi-effect, sometimes called entropy, it is the negative aspect of this energy which Sun sends to our planet. The world sees nowadays an increasing global warming period which in its turn has been attributed to heliogenic and/or anthropogenic effects. The cyclic nature of the influence of Sun on earths climate is discussed. Also the expected Sun activity maximum of the year 2012 and further NASA forecasts for the coming years until the end of the 25th Sun cycle are presented and discussed. We show that the cycles of Nature are the most important but also that the anthropogenic effects could damage the sensitive balance which is the outcome of the interplay between the natural forces and Man, a balance which was kept in the long history of the mankind, but now in the last decades is seriously threatened.

Brief biography of the Speaker: MSc Chemical Engineer NTUA Athens 1971, PhD Food Engineering, Lund , 1987, Sweden. Vassilis Gekas is Professor of Transport Phenomena amd Directore of the Transport Phenomena & Environmental Thermodynamics at the Technical University of Crete. He gained international reputation in the Membrane Technology both the synthetic and biological membranes. Author of the CRC edited book of "Transport Phenomena of Foods and Biological Materials", boca Ratomn FL, 1992. Author of several books in Greek. He was the first to be chairman of the Environmental Engineering dpt , 1984- 2003. He deals with teaching and research in the following fields: Renewal energy sources, desertification, unit operations with developing of Greek raw materials , recovery of high added value constituents from agro-food wastes, enzymatic conversion of starch, thermal treatment of solid wastes, solar cooling. His approximately 50 publications in international journals gained the attention of approximately 1000 colleagues (CI=1000).

Authors Index

Abdallah, M. A.	360	Dascalu, M.	518	Li, Y.	29
Abdi, H.	225	De Jong, T. M.	229, 235	Liu, J.	41
Abdulateef, J. M.	23	Dihrab, S. S.	495	Lotfi, R.	118
Abu-Khashabeh, M.	79	Dincer, I.	487	Lubis, L. I.	487
Afshari, E.	35, 73	Dobrucky, B.	319	Luisser, F. S.	204
Ahmad, I.	23, 500, 534	Dodds, S.	14, 173, 379	Marcolt, C.	392
Ajedegba, J. O.	480	D'Ottavi, S.	341	Markic, M.	303
Akamatsu, F.	51	Dragulinescu, M.	518	Masood, A.	345
Akhtarkavan, H.	107	Durairaj, S.	407, 523	Milea, L.	518
Akhtarkavan, M.	107, 145	El-Ghalban, A.	99	Mofidi, S. M.	107, 145, 165
Al-Ghandoor, A.	79	Elkamel, A.	330	Mohelnikova, J.	470
Alghoul, M. A.	23, 495, 500	Farahmandpour, B.		Monfared, S. A. H.	213
J (528, 538	Faridah-Hanum, I.	398	Moradi, A. M.	107, 145
Al-Hattab, M.	79	Fatehifar, E.	330	Moraru, C. M.	260
Al-Hinti, I.	79	Flynn, D.	523	Moya Ch., F. D.	219
Ali, S.	41	Fox, B.	407, 523	Muzi, F.	15, 243
Ali, Y.	500	Gallardo, C.	180		336, 341
, Alizadeh Osalu, A.	330	Gekas, V.	19, 298	Mylonas, N. A.	424
Al-Khannak, R.	324	Gharebaghi, M.	84	Nakamura, M.	51
Al-Naji, A.	79	Gjengedal, T.	505	Nakao, Y.	51
Al-Sudairawi, M.	264	Gozzini, B.	474	Nasseri, I.	151
Amin, N.	495	Grimsmo, L. N.	505	Naterer, G. F.	158, 480
Anwar, A.	345	Gualtieri, G.	474	Neagu, C.	392
Apostol, T.	198	Hansen, M.	55	Ngoc, U. N.	284
Assefi, H.	84	Hayashi, J.	51	Nicola, D. A.	433
Atikol, U.	84	He, YX.	29, 67	Nishioka, D.	51
Avami, A.	130, 293	Hosny, W.	319	Ogedengbe, E. O. B.	158
Azhari, A. W.	528	Hosseini, S. N.	46	Oltu, O.	518
Azizian, M. R.	84	Husain, E.	345	Othman, M. Y.	534
Azmi, B. Z.	538	Hwang, SM.	51	Paraskaki, I.	298
Badea, A.	198	Ibrahim, M. Z.	512	Passacantando, L.	336
Baharmast, V.	118	Jadid, S.	307	Pavlika, V.	270
Balteanu, O.	260	Jafari, H. H.	151	Payne, D.	270
Barbu, C. T.	186	Jahanshah, F.	534	Perryman, R.	14, 173, 379
Bedoya, D. B.	219	Jahantigh, N.	73	Polkowska, S.	17, 349
Bitzer, B.	324	Jannuzzi, G. D. M.	219	Pop, E.	186
Blas, M.	355	Jazayeri, S. A.	35	Raducanu, A.	386, 392
Borghei, M.	46	Joudeh, M.	79	Rahman, M. M.	192
Bornea, A.	260	Jusoff, K.	421, 439	Ramadan, A. A.	264
Boroujerdy, P. S. K.	248	Kamaruzaman, J.	398	Rasul, M. G.	55, 124
Boudaghpour, S.	213	Kaynejad, M. A.	330		192, 457
Brandusa, A.	433	Khan, L. A.	99	Razak, J. A.	500
Brandusa, C.	433	Khan, M. F.	345	Rosen, M. A.	13, 90, 136
Bucur, C.	260	Khan, M. M. K.	192		158, 204
Bukarica, V.	61	Kijima, H.	113		480, 487
Bulucea, C. A.	433	Korpaas, M.	505	Saiful, I.	398
Busillo, C.	474	Kralj, D.	303	Sakellaris, J. K.	365, 424
Buzdugan, L.	186	Latiff, A.	398	Salami, A.	225, 307
Calastrini, F.	474	Leba, M.	186	Sancom, A.	276
Cocarta, D. M.	198	Ledesma, P.	180	Satayopas, B.	254, 313
Da Silva, L. C. P.	219	Li, FR.	29, 67	Sattari, S.	118, 130
ISSN: 1790-5095		Page 545		ISBN: 97	78-960-6766-43-5

Schnitzer, H.	284	Sulaiman, M. Y.	23, 538	Wahab, M. A.	538
Schrader, J. R.	457	Suvergel, A.	386, 392	Williams, C. R.	124
Smajo, J.	451	Taghavinia, N.	46	Yuji, W.	16
Sobik, M.	17, 349, 355	Taha, D.	439	Zaharim, A.	23, 495, 500
Sooriyakumar, G.	173, 379	Tao, WJ.	29, 67		528, 534, 538
Sopajaree, K.	276	Thao, P. T. B.	254, 313	Zaidi, S. H.	534
Sopian, K.	23, 495, 500	Thongboonchu, N.	313	Zailan, R.	512
	528, 534, 538	Tomsic, Z.	61	Zamfir, A.	464
Stanca, A.	386, 392	Tsang, E.	480	Zekovic, S.	412
Stefan, I.	260	Vongmahadlek, C.	254, 313	Zhang, M.	254
Stefan, L.	260	Vossoughi, M.	46	Zhang, SL.	29, 67
Stefan, M.	392	Voulgaridis, M.	298	Zuberi, M. U.	345
Stefanescu, I.	260	Vujosevic, M.	412		
Stoian, M.	518	Vukadinovic, D.	451		