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Symbol Unit Physical dimension

Kft [-] factor for bundle geometry
Ku [-] universal characteristic number for heat transfer
Kz [-] factor to account for a small number

of consecutive tube rows in cross-flow
l′ [m] characteristic dimension
lk [m] characteristic dimension according to Mirkovics
m [m−1] parameter for fin efficiency
m∗ [kg m−2s−1] mass velocity
n [-] exponent
nA [-] arrangement factor for smooth tube bundles
nR [-] number of consecutive tube rows in cross-flow
Nu [-] Nusselt number
Pr [-] Prandtl number
PrL [-] Prandtl number of air
R [m] radius above fins
r [m] radius
rA [m] radius of the basic tube
Rb [-] quotient according to Nir
Re [-] Reynolds number
s [m] half fin thickness as a function
sR [m] fin thickness
St [-] Stanton number
sW [m] head width of hexagonal fins
s
′

W [m] smaller head width of hexagonal fins
s
′′

W [m] larger head width of hexagonal fins
td [m] diagonal pitch
tl [m] longitudinal pitch
tq [m] transverse pitch
tR [m] fin pitch
U [m] circumference
V [m3] volume
W [-] Atot/A0f

wE [m/s] gas velocity in the narrowest cross-section
wm [m/s] mean gas velocity
wR [m/s] effective gas velocity
w0 [m/s] gas velocity in the empty channel
y′ [-] variable
z [-] variable
zq [-] factor for transverse pitch according to Wehle
α [W/m2K] heat transfer coefficient
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XVI

Symbol Unit Physical dimension

αi [W/m2K] inside heat transfer coefficient of the bare tube
α0 [W/m2K] real heat transfer coefficient
∆p [N/m2] pressure drop
η [kg/m.s] dynamic viscosity
ϑ [C] temperature
λ [W/mK] thermal conductivity
ν [m2/s] kinematic viscosity
ξ [-] pressure drop coefficient
ρ [kg/m3] density
ϕ [-] factor
ψ [-] porosity

Index Denoation

Bm mean boundary layer
F fluid
gm gas mean
g1 gas inlet
g2 gas outlet
m mean
RF fin base
Ri fin
Ro tube
Wa wall
wm water mean

Abbreviation Denoation

ESCOA Extended Surface Corporation of America
HEDH Heat Exchanger Design Handbook
FDBR Fachverband Dampfkessel-, Behaelter- und Rohrleitungsbau
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Abstract

In designing and constructing heat exchangers with transverse finned tubes in
cross-flow, it is necessary to know correlations for calculating heat transfer and
pressure drop. In addition to the common use of the Reynolds and Nusselt groups
of dimensionless numbers, heat conduction in the fins also has to be accounted
for in calculating heat transfer. A reduction coefficient termed ”fin efficiency” is
therefore introduced, by which the actual heat transfer coefficient is multiplied in
order to get the apparent heat transfer coefficient. ”Fin efficiency” is computed
according to the laws of heat conduction under the assumption that the actual
heat transfer coefficient is uniformly distributed across the fin surface.

Introducing geometrical constants for the fins, that is fin height, fin pitch, and
fin thickness, into the equations for heat transfer and pressure drop makes these
equations more bulky than the one for bare tube heat exchangers. Moreover,
there is no self-evident characteristic dimension for a finned tube, as is the case
with tube diameter for bare tubes, therefore many different proposals for the
characteristic dimensions exist, which are in turn needed for setting the Reynolds
and Nusselt dimensionless number groups. Some authors even use different char-
acteristic dimensions for the Reynolds number and for the calculation of heat
transfer and pressure loss.

Due to the complex geometry of finned tube designs, equations for heat transfer
and pressure loss are derived mostly from experiments. When using for design
purposes the equations obtained, a thorough knowledge of the condition of the
tested finned tubes is necessary, i.e. of the materials and shape of fins, tubes and
mode of attachment. For steam boilers and high pressure heat exchangers in the
process industry, spiral finned tubes are commonly used today; here a ribbon of
steel is wound spirally around a boiler tube and welded to it. For these finned
tubes, coefficients of heat transfer and pressure loss are higher than for tubes with
circumferential fins. Finned tubes are mostly arranged in bundles, which may be
arranged staggered or in line. The later coefficients of heat transfer are in fact
approximately only two thirds compared to staggered arrays. Therefore, many
more staggered finned tube bundles have been tested. The equations for heat
transfer in finned tube bundles give the results for a certain number of rows in
longitudinal direction. For a smaller number of rows in staggered bundles, heat
transfer is lower, while for in-line bundles it is higher.

With air coolers and heaters, tube bundles often have continuous fins, which may
be easier to manufacture as long as fin pitch and the tube diameter are small. The
equations for heat transfer and pressure loss are somewhat different for such tube
bundles with continuous fins as compared to serrated finned tubes. In order to
achieve a very small air-side pressure loss, extended tubes of various shapes may
be used in the place of circular tubes, when fluid pressure in the tubes permits
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non-circular tubes. In some cases, corrugated or wavy fins are used, whereas
corrugated fins increase heat transfer and wavy fins have a better ratio of heat
transfer to pressure loss.
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