Editors: Prof. Photios Anninos, Greece, Prof. Tuan Pham, Australia, Prof. Alexander Grebennikov, Mexico

ADVANCED TOPICS on MATHEMATICAL BIOLOGY and ECOLOGY

Published by WSEAS Press www.wseas.org

Proceedings of the 4th WSEAS INTERNATIONAL CONFERENCE on MATHEMATICAL BIOLOGY and ECOLOGY (MABE '08)

Acapulco, Mexico, January 25-27, 2008

Mathematics and Computers in Science and Engineering
A Series of Reference Books and Textbooks

ISBN: 978-960-6766-32-9

ISSN: 1790-2769

ADVANCED TOPICS ON MATHEMATICAL BIOLOGY and ECOLOGY

Proceedings of the 4th WSEAS International Conference on MATHEMATICAL BIOLOGY and ECOLOGY (MABE'08)

Acapulco, Mexico, January 25-27, 2008

Mathematics and Computers in Science and Engineering
A Series of Reference Books and Textbooks

Published by WSEAS Press

www.wseas.org

ISBN: 978-960-6766-32-9

ISSN: 1790-2769

ADVANCED TOPICS ON MATHEMATICAL BIOLOGY and ECOLOGY

Proceedings of the 4th WSEAS International Conference on MATHEMATICAL BIOLOGY and ECOLOGY (MABE'08)

Mathematics and Computers in Science and Engineering A Series of Reference Books and Textbooks

Published by WSEAS Press www.wseas.org

Copyright © 2008, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html

ISSN: 1790-2769

ISBN: 978-960-6766-32-9

World Scientific and Engineering Academy and Society

ADVANCED TOPICS ON MATHEMATICAL BIOLOGY and ECOLOGY

Proceedings of the 4th WSEAS International Conference on MATHEMATICAL BIOLOGY and ECOLOGY (MABE'08)

Acapulco, Mexico, January 25-27, 2008

Editors:

Prof. Photios Anninos

Medical Physics Department of Medicine Democritus University of Thrace Alexandroupolis, GREECE

Prof. Tuan Pham, PhD

School of Information Technology James Cook University Townsville, QLD 4811, AUSTRALIA

Prof. Alexander Grebennikov

Ciudad Universitaria, CP 72570, Puebla Country MEXICO

International Program Committee Members:

Constantin Marin, ROMANIA

Leonarda Carnimeo, ITALY

Stavroula Sofou, UNITED STATES

Wolfgang Wenzel, GERMANY

Takeshi Gotoh, JAPAN

Neera Bhalla Sarin, INDIA

Magdalena Maj-Zurawska, POLAND

Ryuichi Ueoka, JAPAN

Alfred Zehe MEXICO,

Adesoji Adesina, AUSTRALIA

C. M. Kao, TAIWAN

A. Lazakidou, GREECE

Konstantin Belyaev, AUSTRALIA

Greg Knowles, AUSTRALIA

Akisato Kubo, JAPAN

Bjorn Kvamme, NORWAY

Marios Poulos, GREECE

Wen-Zer Lin, TAIWAN

Joseph Quartieri, ITALY

Ako Sauga, ESTONIA

Stefano Steri, ITALY

Nikos Mastorakis, GREECE

Kuei-Yang Wu, TAIWAN

Cala L., AUSTRALIA

D'Attelis C.E., ARGENTINA

Kaminski J., USA

Kwembe T., USA

Sieniutycz S., POLAND

Preface

This book contains proceedings of the 4th WSEAS International Conference on Conference on Mathematical Biology and Ecology (MABE'08) which was held in Acapulco, Mexico, January 25-27, 2008 The WSEAS Mathematical Biology and Ecology Conference was started in Udine, Italy, January 2005 and then held in Miami, Florida, USA, January 2006. It was also held in Gold Coast, Queensland, Australia, January 2007 and this year in Acapulco, Mexico. The Society (WSEAS) has also organized many other separate or joint conferences on Biology, Biochemistry, Biophysics, Bioengineering, Biotechology, Ecosystems, Ecology, Oceanology, Forest Science, Environment, Development etc... well as their impact and their interaction with other areas of Modern Engineering and Science. The relevant titles could be retrieved from the web site: www.worldses.org/history.htm

The 4th WSEAS International Conference on Mathematical Biology and Ecology (MABE'08) aims to disseminate the latest research and applications in the afore mentioned fields. The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers. The WSEAS Conferences attract a large number of well-established and leading researchers in various areas of Science and Engineering as you can see from http://www.wseas.org/reports. Your feedback the society encourages ahead you can see in to go http://www.worldses.org/feedback.htm

The contents of this Book are also published in the CD-ROM Proceedings of the Conference. Both will be sent to the WSEAS collaborating indices after the conference: www.worldses.org/indexes

In addition, papers of this book are permanently available to all the scientific community via the WSEAS E-Library.

Expanded and enhanced versions of papers published in these conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, Compendex, INSPEC, CSA see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal).

We cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals.

The Editors

Plenary Lecture I

Receiver Operating Characteristic (ROC) Curve: A Tool for Describing and Comparing Continuous Diagnostic Tests

Professor Ivana Horova Masaryk University Dept. of Math. and Statist. Jan/a?ckovo n/am. 2a 602 00 Brno Czech Republic

Abstract: The ROC methodology has been developed in 1950's. It is derived from signal detection theory where it is used to determine if an electronic receiver is able to satisfactory distinguish between signal and noise. Recently there has been an increased use of ROC curves for assessing the effectiveness of continuous diagnostic markers in distinguishing between healthy and diseased individuals. The most common parametric methods to estimate the ROC curve are based on bi-normal or bi-logistic model. But problems can occur if the distributional assumptions are not satisfied. Non-parametric methods do not have any distributional assumptions and are an ideal alternative for ROC curve analysis. In this lecture two different approaches to nonparametric estimates via kernel methods are presented. The first method is based on kernel estimates of cumulative distribution functions and the second one uses the fact that, in statistical terms, ROC curve is the non-null distribution function of the P-value. We conduct a simulation study to compare ROC curves obtained by proposed methods to data sets one of which fulfils the assumptions for bi-normal model. In conclusion, these methods are applied to medical data.

Plenary Lecture II

Conquering the time scale problem in biophysics and materials science

Professor Wolfgang Wenzel
Research Center Karlsruhe,
Institute for Nanotechnology,
PO Box 3640, D-76021 Karlsruhe,
Germany

E-mail: wenzel@int.fzk.de
Web site: http://www.fzk.de/biostruct

Abstract: Driven by ever more powerful computational resources, simulation methods have become increasingly important to compliment experimental investigations in many scientific disciplines. Increasingly such methods are not only used to understand biological or physical phenomena, but to predict the outcome of experiments not yet performed or to the design biological effectors or nano materials with specific properties. Unfortunately structure formation in biological systems, as well as in many other areas of the nano science, occurs on time scales that are billions of times longer than the individual time step of present-day optimistic simulation methods. Here I will discuss an alternate approach, based on the development of atomistic free-energy forcefields, which can circumvent this "time-scale gap" for many scientific applications. I will present recent results of large-scale simulations for biomolecular structure formation (protein folding and protein structure prediction), drug-design and nano-material simulations with this approach. Perspectives of this approach for world-wide distributed computing and further scientific applications will be discussed.

Brief Biography of the Speaker: Wolfgang Wenzel studied physics at the University Bochum starting in 1983. As a Fulbright fellow he moved to Ohio State University (Columbus, Ohio, USA) in 1985 where he graduated 1989 with a Ph.D. in physics. He stayed as a postdoctoral fellow in the laboratory of Prof. Ken Wilson until his return to Germany in 1992, where he joined the department of physics of Dortmund University. In 2001 he became a group leader for computational nanophysics at the newly founded Institute for Nanotechnology at the Research Center Karlsruhe, one of Germany's national laboratories. Together with his group he works on the development of predictive simulation methods to accurately describe slow processes in various scientific fields: these include the POEM (protein optimization with energy methods) for biomolecular structure simulation, including protein folding, docking and structure prediction; the FlexScreen high-throughput in-silico screening approach for drug development and efficient simulation techniques for the description of nano-materials (http://www.fzk.de/biostruct).

TABLE OF CONTENTS

Step-By-Step model for the TBP/TATA-box binding allows to predict human familial diseases upon single nucleotide polymorphisms Petr Ponomarenko, Ludmila Savinkova, Irina Drachkova, Marina Lysova, Tatyana Arshinova, Mikhail Ponomarenko, Nikolay Kolchanov	13
A mathematical model of visceral hypersensitivity Roustem Miftahof	18
Double temperature-enhanced occupancy of metastable states in fluctuating bistable potentials Romi Mankin, Erkki Soika, Ako Sauga	24
Time delay stochastic growth laws in single-species population modeling Petras Rupšys	29
Quality of Data, Information and Indicators in Environmental Systems Jiri Hrebicek, Michal Hejc	35
Wavelet Based Ventricular Tachyarrhythmia Detection System Muazma Zahid	41
A Hierarchical Artificial Neural Network Model for Giemsa-Stained Human Chromosome Classification Jongman Cho	44
Mahematical model for a Tequila Batch Fermentation Melchor Arellano, Enrique Herrera, Dulce Díaz-Montaño, Alonso Moran and Jesús Ramírez	50
Visual servoing controller for robot manipulaters Jaime Cid, Fernando Reyes, Alfred Zehe	55
Ecological anatomy of halophyte species from the Chenopodiaceae family Marius-Nicusor Grigore, Constantin Toma	62
Multivariate data analysis for the detection of surface defects in the dental enamel during orthodontic treatment Cortez José Italo, González Flores Marcos, Perea González Gloria Patricia, Vega Galina Victor Javier, Cortez Liliana, Cortez Ernest Italovich, Rubín Falfan M.	68
Automatic Identification of Tobacco Whiteflies, Aphids and Thrips in Greenhouse Using Image Processing Techniques Jongman Cho, Junghyeon Choi, Mu Qiao, Chang-woo Ji, Hwang-yong Kim, Ki-baik Uhm, Tae-soo Chon	74

Modeling signal transmission and robustness in biological neural networks Christos Kotsavasiloglou, Alkiviadis Kalampokis, Panos Argyrakis, Stavros Baloyannis	80
Mahematical model of information process in vestibular mechanoreceptor Vladimir V. Alexandrov, Tamara B. Alexandrova, Rosario Vega, Gregorio Castillo Quiroz, Maribel Reyes Romero and Enrique Soto	86
A Prebiotic Stereospecific Synthesis of Biotin Analogues Nigel Aylward	92
VIH Populations Resistance Simulated by a Genetic Algorithm Armando Barrañón	100
Spectral representation of system dynamics and molecular activity – An engineering perspective of biological models Simon Hardy and Pierre N. Robillard	103
A biomathematical study of a controlled birth and death process describing malignancy Joseph Quartieri, Stefano Steri, Michele Guida, Claudio Guarnaccia, Salvatore D'Ambrosio	108
Permanent coexistence for a nonlinear response omnivory model James A. Vance	116
Smooth Estimates of Distribution Functions with Application Ivana Horova, Jan Kolacek, Jiri Zelinka, Abdel El-Shaarawi	122

AUTHORS INDEX

Alexandrov, V.V. 86 Madhavkumar, S.	128
,	
,	24
Marcos, G.I.	68
	18
,	50
Arya, A. 128 Ponomarenko, M.	13
Aylward 92 Ponomarenko, P.	13
Baloyannis, S. 80 Qiao, M.	74
Barrañón, A. 100 Quartieri, J.	108
Cho, J. 44, 74 Quiroz, G.C.	86
Chon, T.S. 74 Ramírez, J.	50
Cid, J. 55 Renumadhavi, C.	128
D'Ambrosio, S. 108 Reyes, F.	55
Herrera, E. 50 Robillard, P.N.	103
Drachkova, I. 13 Romero, M.R.	86
El-Shaarawi, A. 122 Rosario Vega, R.	86
Gloria Patricia, P.G. 68 Rubín Falfan, M.	68
Grigore, M.N. 62 Rupšys, P.	29
Guarnaccia, C. 108 Sauga, A.	24
Guida, M. 108 Savinkova,L.	13
Hardy, S. 103 Shilpa, D.	128
Hejc, M. 35 Singh, P.	128
Herrera, E. 50 Soika, E.	24
Horova, I. 122 Soto, E. Soto, E.	24 86
Hrebicek, J. 35 Steri, S.	108
Italo C'I	62
Italovich, C.E. Toma, C. Uhm, K.B.	74
$I_1 \subset \mathcal{M}$	116
Kalampokis, A. Vance, J.A.	
Kim HV 74 vega, K.	86
Kolacek I 122 Victor Javier, V.G.	68
Kolchanov N 13 Zamd, M.	41
Kotsavasiloglou C 80	55
Zelinka, J. Liliana, C. 68	122
Lysova, M. 13	

