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Motivation

The basic idea isito achieve unbiased protein
classification.

In"our agenda we would like to:

a) Classifiy sets of proteins from simple
organisms (E. coli and S. cerevisiae)

- We use Kohonen'’s self-organizing maps

b) Analyze the clusters in order to determine
the reasons why the proteins in the said
clusters appear as they do

- We use specific pattern recognition
techniques now under development



Agenda

1. We make a brief review of
- Proteins
- The genetic code
- Aminoacids
2. We talk a little about the SOMs

3. We discuss lossless compression
algorithms and their relationship to the
problem



Proteins (basic concepts)
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’ e Proteins are the most important macromolecules.

e Form much of the functional and structural machinery
of every cell in all organisms.

e Proteins control physicochemical conditions inside the
cell, are the basic components of cellular structure,
carry out the fransport and storage of small molecules
and are involved with the transmission of biological
signals.



Proteins i...basic concepts)

e Proteins include the enzymes which catalyze and
regulate a variety of biochemical processes in the cell

as well as antibodies.

e Each type of cell has several thousand kinds of proteins
which play a primary role in determining the characte-
ristics of the cell and how it functions.

e Proteins are complex molecules, assembled from 20
different amino-acids.



Proteins (...basic concepts)
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’ e An amino acid is defined as the molecule containing an

amino group (NH2), a carboxyl group (COOH) and an R
group. It has the following general formula:

R

|
HaN*—CH-C0O0"

The R group differs among various amino acids.



Proteins (..basic concepts)

e There are over 300 naturally occurring amino acids on
earth, but the number of different amino acids in

proteins is only 20.

e The Carbon atom at the center of the molecule is
called the alpha Carbon.

e The amino acids form the vocabulary that allows proteins
to exhibit a great variety of structures and properties.



Proteins (...basic concepts)
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e Each protein sequence is encoded in a DNA sequence
called a gene, in which every block of three nucleic acids
(codon) corresponds to an individual amino acid.

e The set of rules that specify which amino acid is encoded
in each codon is called the genetic code.

e The R group is the one that determines the physicochemical
characteristics of each amino acid.



The Genetic Code
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Alanine  ALA A [13.0 71 67 H
Arginine ARG R 53 157 [12.5148 C+
Asparagine ASN N 99 114 96 P
Aspartate ASP D 9.9 114 B p1 C-
Cysteme |CYS C |18 103 86 P
Glutamate |GLU [E  [10.8 128 4.3 [109 C-
Glutamine |GLN Q  [10.8 128 114 P
Glycine  |GLY |G [78 57 48 .
Histidne HIS H 0.7 137 6.0 |118 P,C+
Isoleucine IE I @44 113 124 H
Leucine LEU L [7.8 113 124 H
Lysine LYS K [70 129 [10.5/135 C+
Methionine MET M 38 131 124 H
Phenylalanne PHE F 3.3 147 135 H
Proline PRO P 46 97 90 H
Sene  SER 5 ko 87 | 13 P
Threonme [THR T 4.6 101 93 P
Tryptophan TRP W |10 186 163 P
Tyrosine TYR |Y 2.2 1163 [10.1/141 P
WValine VAL V6.0 99 105 H




Protein Expression

Pis the expression of a
I

MARKTKQEAQETRQHI L DVALRLFSQQGVSSTS
LGEl AKAAGVTRGAI YWHFKDKSDLFSEI WELF
RPCKRCQPEKANAQQHRL DKI THACRLLEQETP
VTL EALADQVANVSPFHL HRL FKATTGMTPKAWD
QAVRARRL RESLAKGESVTTSI LNAGFPDSSSY
YRKADETL GMI AKQFRHGGENL AVRYAL ADCEL
GRCLVAESERG CAl LLGDDDATLI SELQQVFP
AADNAPADL MFQQHVREVI ASLNQRDTPL

The following s
tein of E.

V.




Protein Structure

-

e The specific amino acid sequence of a protein is called
the primary structure of the protein.

V.

e The average length of a protein sequence is 350 amino
acids, but it can be as short as few amino acids, and as
long as a few thousand (5000 the longest known).

e According to the central dogma of protein folding, the
protein sequence (primary structure) dictates how the
protein folds in three dimensions. It is the specifical
three dimensional structure that enables the protein
to function in its particular biological role.



Protein Structure
ry

e Secondary Structures are local sequence elements
(30-40 aa” s long) that have a well determined regular
shape, such as alpha helix or beta strand (beta sheet),

also other local sequence elements exist and are called
loops or coils.

e Secondary structures are packed into what is called
the Tertiary Structure.



Protein’s secondary structure

Alpha helix

Hydrogen bonds play a role in stabilizing the a helix
conformation. However, the size and charges of
sidechains are also important factors



Protein’s secondary structure

Beta Strand (sheet) :

A Beta sheet consists of two or more hydrogen bonded
Beta strands. The two neighboring Beta strands may be
parallel if they are aligned in the same direction from
one term (N or C) to the other, or anti-parallel if

they are aligned in the opposite direction



Protein’s tertiary structure




Protein Classification
v 4

e Many different criteria has been used in order to
’ clasify the universe of proteins. Some of this criteria
has to be with physical properties (solubility), other
with chemical properties and some other more with
shape and functional characteristics. All this methods
were developed to organize the proteins whose structure
and function were well known.



Protein Classification
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e After the Big Bang of molecular biology, when hundreds
' of thousand new protein sequences have been described,
new classification approaches have been developed that
try to organize this new proteins, about which we have
little or no information. A unified scheme should be
based on a natural (evolutionary) classification approach.

e The three dimensional structure of a protein gives the
most information about its biological function, but
determining the structure of a protein is difficult. At
the moment there are only several thousand known
structures.



...Protein Classification
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e In the absence of structural data, sequence analysis
’ remains the main source of information for most new
proteins.

e In most cases, sequence similarity entails similar or
related functions. Detecting similarities between
protein sequences can help to reveal the biological
function of new protein sequences, as well as their
origin and relations with other proteins.



...Protein Classification
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e Sequence similarity is not always easily detectable.
During evolution, sequences have changed by insertions,
deletions and mutations. Some of these evolutionary
events may be traced today by applying algorithms for
sequence comparison.

e When sequences share a significant sequence similarity
they are usually assumed to have a common evolutionary
ancestry, and are called homologous proteins.



f

...Protein Classification

-

e Given a new protein sequence, the current approach to

predicting its function and analyzing its properties
hinges on pairwise comparisons with the sequences of
other proteins whose properties are already known.
Pairwise comparisons have shown not being enough to
organize and classify the big volume of data already
available. New techniques, most of them involving
multiple alignments have been developed.

Sequence comparison is not a straightforward process,
as many evolutionary and physicochemical elements
should be taken into account when comparing two protein
sequences. Much nomenclature has been developed to
achieve this goal.



...Protein Classification

A good protein classification system must take into
account at least the following elements: 1) Sequence,
2) Structure, 3) Biomolecular interactions and 4) Sub-
cellular localization.

None of the available databases takes into account more
than one of these elements.

But the information existsin the databases and we need
a method to make this information converge, fo cross
information between the databases.

We may use Kohonen maps to achieve this task.
Problem: Represent sequence,structure and function of
each protein with a finite number of variables indepen-
dent of both, the sequence length and any multiple
alignment data.



Hypothesis

It Is possible to achieve classification of
the proteins of a living organism (we
shall focus on E. coli and S. cerevisiae)
paying attention solely to the structural
characteristics (strings of aminoacids) of
the proteins.



Clustering

The first problem is to attain the automatic
clustering of the diverse proteins.

To do this, we shall use self-organizing
maps In which the determination of the
cluster membership is achieved using
genetic algorithms.



Step 1.
= N

In this map all
neighbouring neu-
rons belong to a 4-
cluster.

But we do not
know the 5
clusters’ bound-
aries.




An Example of a SOM
|

In this map the
neurons have 4-
been labeled,

so that we know

to which cluster 2/
each neuron
belongs.

. GROUP 1

GROUP 2

B crove 3




Present Status

= As of today, we have achieved initial
success by finding sets of proteins
whose basic clustering is derived from
structural relationships between the
aminoacids

= Much work remains to be done



Explaining the Clusters

By using SOMs we may find non-biased
clusters.

To explain why they cluster in such way It
IS possible to apply meta-symbolic
search algorithms.



Explaining the Clusters

Our second task Is, perhaps, more challenging
than the first one

Once we achieve structural clustering, we
would like to find common structures in the
proteins in each cluster

To this effect we apply data compression
techniques

The basic idea is to remove redundancy from
the proteins and THEN look for similarities



A Protein as a Message

As stated, a protein may be expressed as a
string of symbols (aminoacids)

In this sense, what we assume Is that the
original expression of any such protein may

be re
We pro

placed by a shorter, more compact way
nose to identify the underlying patterns

IN Ore

er to uncover a similarity measure

between different proteins



Lossles Data Compression

Symbol P(SI1) Sum Code | Length Avg(L) Std
S1 0.50000000 | 1.00000 0 1 0.500 3
S2 0.25000000 | 0.50000 10 2 0.500 3
S3 0.12500000 ' 0.25000 / 110 3 0.375 3
S4 0.06250000 ' 0.12500 1110 4 0.250 3
S5 0.03125000 0.06250 | 11110 5 0.156 3
S6 0.01562500 0.03125 111110 6 0.094 3
S7 0.00781250 ' 0.01563 1111110 7 0.055 3
S8 0.00781250 1111111 7 0.055 3

SUMA 1.984 3



Information Theory

The Iinformation of assymbol (as per
Shannon), is‘given by:

where P,=

(Si) -~
nrobabi

appears.
The average information (Entropy) Is
given by:

H(S)= > PI(S)

0g,(P)

ity that symbol S,



Lossles Data Compresion

Avg.
Symbol P(SI) I(SI) Information

S1 0.50000000 1.00000 0.50000
S2 0.25000000 2.00000 0.50000
S3 0.12500000 3.00000 0.37500
S4 0.06250000 4.00000 0.25000
S5 0.03125000 5.00000 0.15625
S6 0.01562500 6.00000 0.09375
S7 0.00781250 7.00000 0.05469
S8 0.00781250 7.00000 0.05469

Entropy 1.98438



Lossles Data Compression

Notice that the optimal average length is
bounded by the entropy.

When as here, the probabilities are powers of 2,
It IS possible to reach this limit.

When such is not the case, the theoretical
bound cannot be reached using this kind of
encoding (Huffman Coding, after its creator).



The limitations of Information
Theory

One of the tacit premises in classical IT is that
the “symbols” are entities defined a priori
(bytes, words, etc.) whose grouping
relationship implies a topologic closeness.

For example, If we consider letter couples, we
normally consider them to be neighbours. In
English, the couple “th” implies that P(e|th) Is
very high.



Ergodicity

One of the assumed characteristics of the
data source, for the encoding to be
effective, Is ergodicity.

Intuitive
proba

y, a source Is ergodic Iif “|ts”
nilities “stabilize” after a bounded

perioc

of time.

A counter-example would be the one
where we transmitted a block of English
text, followed by an image (i.e. “jpg”).



Ergodicity

In'the last example clearly, the
probabilities of the first block will differ
from the ones in the second block.

We emphasize the fact that we have
called “probabilities”, in practice, refers
to the proportions gotten from the
statistical analysis of data blocks.



“Transformation” of non-ergodic Into
ergodic Sources

The agenda we have set is to find sets of not
necessarily neighboring symbols in a non-
ergodic source.

If we achieve this, every set of such symbols
(called a metasymbol) will replace a symbol in
an equivalent ergodic source and will allow us
to apply first order techniques to independent

clusters.



Huffman

Assume the sample:
AAABAAAABAABAABB
A appears 11 times

B appears 5 times

Only two symbols.
Huffman assigns: A=0,B =1.



Higher Orders

digram fre |cH |8-gram |[fre |cH |4-gram |fre |[cH
AA 4 |0 |AAB 3 |0 |[AAAB |1 |00
AB 2 |10 |AAA 1 |10 |AAAA 1 |01
BA 1 |111|BAA 1 |111|BAAB |1 |10
BB 1 |110 | B## 1 |110/AABB |1 |11
Total 14 bits 11 bits 8 bits




Dictionary Methods

= A dictionary with frequent strings Is built.

<+ Every instance of the string Is replaced
by a reference to the dicionary.



Example
(a piece of a poem by Sor Juana)

AL QUE INGRATO ME DEJA, BUSCO AMANTE;

AL QUE AMANTE ME SIGUE, DEJO INGRATA;
CONSTANTE ADORO A QUIEN MI AMOR MALTRATA,;
MALTRATO A QUIEN MI AMOR BUSCA CONSTANTE

1. AL QUE_ 6. MALTRAT

5> INGRAT 7. CONSTANTE
3 ME 8. DEJ

s AMANTE 9. BUSC

5. _A QUIEN _MI_AMOR



&sult

12038A, 90 4;
143SIGUE, 80 2A;
7/ ADOROS6A,;
6059A 7



Or else...

AL QUE_INGRATO ME DEJA, BUSCO AMANTE;

AL QUE AMANTE_ME_SIGUE, DEJO INGRATA;
CONSTANTE_ADORO A QUIEN MI AMOR MALTRATA;
MALTRATO A QUIEN MI_AMOR BUSCA CONSTANTE

= Build a dictionary with patterns,
not merely with strings.




A possibllity...

Patiern ~ Frequency Size
F B
= 2 G
o - G A D
B3 FECBA 3
fElc ADGADG e F 3 5
; DF CEB EF =t
ADADH
L = HEBDEE c Y
E DACEF
H FEAHA
G FADGH G > 3
A E 3 H
B 1 F 2 ADG S 3 3
A
D =2 H 1
Sirr. Freg. Prob. Fog Hrcffrivaarn
Ox 2 0. 154 2. 8699 001
3 3 0.231 2.114 o1
Entropy: 2.506
Y 2 0.154 2. 699 110
Max. Entropy : 2.585 S 3 0.231 2114 10
- A 2 0.154 2.699 i o
m 1 0.076 3.718 o000




...but not the only one

c eM Pattern | Frequency Size Cover
ADG a 2 12 24
TH: fm 2 12 18
_ Al A
R A DGH fY m 2 8 8
E 4
] A 2 ol 3 2 4
1 F 2
= . cl 1 10 10
c 1 10 64

Hppur =2.3219 (5 symbols)
H =2.2464

Full message :

ABERYTO QOO




Metasymbol compression process

A message Is given. Find the set of patterns
which more frequently appear in the
message.

Find the set of patterns which allows the
shortest expression of the message
iIncluding the “catalog” (a description of the
metasymbols).

Encode the message using the patterns in
the catalog

Optionally also encode such catalog in the
shortest possible way.



Finding Patterns...

= Characteristics of the Patterns:

— They are NOT strings of consecutive
symbols. They show “gaps”.

— The size of the patterns and of the gaps
are arbitrary.

= Reported algorithms to search for these sort
of patterns have exponential complexity (on
the size of the message).



...IS hard!

= Look for the place where the pattern overlaps
with itself; find patterns of frequency = 2.

= FInd the Iintersections of these; then the
Intersections of the intersections...and so on.

= The number of intersections grows
exponentially.

= We have proven that finding the largest
arbitrary pattern of maximum length is NP-
complete.



The MaximumCommonPattern
Problem

= |t Is P-verifiable: given a maximum length
pattern proposal it takes polinomial time to
determine whether it is really common to all
strings.

= Reduction: given any other NP-complete
oroblem, show that it may be mapped in
polinomial time to the
MaximumCommonPattern

= VertexCover was chosen as the NP-complete
“template”.




Finding a subset

= |f we assume that we already have a set
of frequent patterns we must then find a
subset of them which allows us to
express the message and the catalog in
the shortest possible way.

= We proved that this problem is also NP-
complete.



The OptimalPatternSubset
Problem

= It'Is P-verifiable: given a proposal of a subset
and the optimal compression ratio we may
verify in polinomial time whether the subset is
really optimal.

= Reduction: given any instance of an NP-
complete problem known to be NP-complete,
show that it can be mapped to an instance of
the OptimalPatternSubset.

= Knapsack 0-1 was selected.



To wrap up

=We need approximation algorithms
and/or heuristics.

— To find the subset we found a promising
cover-based heuristic.

— We must find those patterns which better
cover the message

— We may then refine with hill-climbers



Heuristics and Meta-heuristics

Given the above, we have complemented
the heuristics with a genetic algorithm.

This GA Is not Holland’s Simple Genetic
Algorithm but, rather, one we have
called “Vasconcelos’ GA” (VGA)

Putting the heuristics and VGA together
we have found some interesting results.



Mini-agenda

= \Vasconcelos’ Genetic Algorithm
= Encoding

= Mutation

= Crossover

= EXperiments and some results



Vasconcelos’ GA

To overcome the limitations of a SGA we
Introduced the so called Vasconcelos
GA.

It displays:
a) Deterministic (i -> n-i+1) coupling
b) Full elitism

c) Annular crossover
d) Uniform mutation



VGA




VGA

Best

Worst

1st generation

2nd generation

3rd generation






Encoding

The message Is looked upon as an array of
symbols “A,B,d,C;A,B.e.C-fg"

The genome is made up of the indices of the
symbols

013 457 268 mmy A,B,C; A,B:C;d,eqf,
TN N



Mutation

It consists of a permutation of two indices
457013268
427013568



Crossover

4570 18 263 Individua A

8413 20 765  Individua B
o

4573 18 263  Individua A

8410 20 765 Individua B

4573 18 260  Individua A
8410 23 765 Individua B



Catastrophe

cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_*uentas_*uentos_*uantos *uentos *uentas
cuentas_ *uentos *uantos_ *uentos_*uentas

cuentos *uantos_ *uentos *uentas
cuantos_*uentos_*uentas

cuentos_*uentas

cuentas



Catastrophe

cuando_cuentas_cuentos cuantos_cuentos cuentas
Cﬁando_**entas_**entos_**antos_**entos_**entas
cuentas **entos_**antos_ **entos **entas

cuentos **antos_**entos **entas
cuantos_**entos_**entas

cuentos_**entas

cuentas



Catastrophe

cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**e*tas **e*tos **a*tos **e*tos_**e*tas
cuentas_ **e*tos_**a*tos **e*tos **e*tas
cuentos **a*tos_**e*tos **e*tas
cuantos_**e*tos_**e*tas

cuentos_**e*tas

cuentas



Catastrophe

cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuan&)_**e*tas_**e**os_**a**os_**e**os_**e**as
cuentas_**e*tos_**a**0s_**e**0s_**e**as
cuentos_**a*tos_**e**0s_**e**as
cuantos_**e*tos_**e**as

cuentos_**e*tas

cuentas



“Garbage collector”

cuando_cuentas_cuentos_cuantos_cuentos_cuentas

p cuando_**e**as_**e**0s_**a**0s_**e**0s **e**as
cuentas_**e**0s_**a**0s_**e**0s_**e**as
cuentos_**a**0s_**e**0s_**e**as
cuantos _**e**0s_**e**as
cuentos_**e**as
cuentas



Catastrophe

cuando cuentas_cuentos_cuantos_cuentos_cuentas

cuand 0_**e** a*_**e** O*_** a**o*_**e** O*_** e**gq*
Cuentas_**e**o*_**a**o*_**e**o*_**e** a*x
Cuentos_**a**o*_**e**0*_**e**a*
cuantos_**e**o* **e**a*

cuentos **e**a*

cuentas

cuando_ cuentas _ cuentos _ cuantos _ cuentos _ cuentas



Catastrophe

cuando cuentas_cuentos_cuantos_cuentos cuentas
cuand o_**e** a*_**e**o*_** a*x* O*_** e**o*_**e** a*
Cuentas_**e**o*_**a**o*_**e**o*_**e** a*x
Cuentos_**a**o*_**e**o*_**e**a*

cuantos_**e**o* **e**a*
cuentos_ **e**a*
cuentas

Metasimbolo

cuando_ cuentas _ cuentos _ cuantos _ cuentos _ cuentas



Finding the Metasymbols

= Applying the previous operators of
coupling, selection, crossover and
mutation to arbitrary messages it is
possible to find the solution to the
compression problem by using the
metasymbolic transform



Comparing compression
methods

= |t IS now possible to establish a
comparison of several compression
schemes

= |n the following table we show the
results of compressing sets of size 512
and 1,024



Results

Original Metasymbols PPM Huffman LZ77 LZW

512
512
1,024
1,024

294

388
746

803

366

412
770

796

448 580 454

482 589 505
1,996 1,165 1,041

863 1,164 1,043




...Results

== Metasymbols
PPM

~—+—Huffman

—=LZ77

——LZW

—e— Oniginal




Explaining the messages

To these algorithms a string of
aminoacids Is not distinguishable from a
string of letters, or pixels, or...

Hence, the meta-symbols embedded in
the clusters may explain why the
clusters arise as they do.



Conclusions

It IS possible to find unbiased clusters of
proteins from protein expression as
aminoacids

It Is possible (and hard) to find
metasymbols in arbitrary sets of data

Applying genetic algorithms + heuristics
we are able to approximate the solution
of these NP problems



Conclusions

Once proteins are re-expressed as
collections of metasymbols the
underlying patterns are easier to detect

Applying search techniques originally
stemming from lossless data
compression it is possible to find the
reasons behind protein clustering



