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Motivation
The basic idea is to achieve unbiased protein 

classification.
In our agenda we would like to:

a) Classifiy sets of proteins from simple 
organisms (E. coli and S. cerevisiae)

- We use Kohonen’s self-organizing maps
b) Analyze the clusters in order to determine 
the reasons why the proteins in the said 
clusters appear as they do

- We use specific pattern recognition 
techniques now under development



Agenda

1. We make a brief review of 
- Proteins
- The genetic code
- Aminoacids

2. We talk a little about the SOMs
3. We discuss lossless compression 

algorithms and their relationship to the 
problem



Proteins (basic concepts)
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Protein Expression
The following sequence is the expression of a 

protein of E. coli:

MARKTKQEAQETRQHILDVALRLFSQQGVSSTS
LGEIAKAAGVTRGAIYWHFKDKSDLFSEIWELF
RPCKRCQPEKANAQQHRLDKITHACRLLEQETP
VTLEALADQVAMSPFHLHRLFKATTGMTPKAWQ
QAWRARRLRESLAKGESVTTSILNAGFPDSSSY
YRKADETLGMTAKQFRHGGENLAVRYALADCEL
GRCLVAESERGICAILLGDDDATLISELQQMFP
AADNAPADLMFQQHVREVIASLNQRDTPL



Protein Structure



Protein Structure









Protein Classification



Protein Classification



...Protein Classification



...Protein Classification



...Protein Classification



...Protein Classification



Hypothesis

It is possible to achieve classification of 
the proteins of a living organism (we 
shall focus on E. coli and S. cerevisiae) 
paying attention solely to the structural 
characteristics (strings of aminoacids) of 
the proteins.



Clustering

The first problem is to attain the automatic 
clustering of the diverse proteins.

To do this, we shall use self-organizing 
maps in which the determination of the 
cluster membership is achieved using 
genetic algorithms.



Step 1:

In this map all
neighbouring neu-
rons belong to a
cluster.
But we do not 
know the 
clusters’ bound-
aries.



An Example of a SOM

In this map the
neurons have 
been labeled, 
so that we know
to which cluster
each neuron
belongs.



Present Status

!As of today, we have achieved initial 
success by finding sets of proteins 
whose basic clustering is derived from 
structural relationships between the 
aminoacids

!Much work remains to be done



Explaining the Clusters

By using SOMs we may find non-biased 
clusters.

To explain why they cluster in such way it 
is possible to apply meta-symbolic 
search algorithms.



Explaining the Clusters

Our second task is, perhaps, more challenging 
than the first one

Once we achieve structural clustering, we 
would like to find common structures in the 
proteins in each cluster

To this effect we apply data compression 
techniques

The basic idea is to remove redundancy from 
the proteins and THEN look for similarities



A Protein as a Message

As stated, a protein may be expressed as a 
string of symbols (aminoacids)

In this sense, what we assume is that the 
original expression of any such protein may 
be replaced by a shorter, more compact way

We propose to identify the underlying patterns 
in order to uncover a similarity measure 
between different proteins



Lossles Data Compression

Symbol P(Si) Sum Code Length Avg(L) Std
S1 0.50000000 1.00000 0 1 0.500 3
S2 0.25000000 0.50000 10 2 0.500 3
S3 0.12500000 0.25000 110 3 0.375 3
S4 0.06250000 0.12500 1110 4 0.250 3
S5 0.03125000 0.06250 11110 5 0.156 3
S6 0.01562500 0.03125 111110 6 0.094 3
S7 0.00781250 0.01563 1111110 7 0.055 3
S8 0.00781250 1111111 7 0.055 3

SUMA 1.984 3



Information Theory
The information of a symbol (as per 

Shannon), is given by:

where Pi=probability that symbol Si 
appears.

The average information (Entropy) is 
given by:
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Lossles Data Compresion

Symbol P(Si) I(Si)
Avg. 

Information
S1 0.50000000 1.00000 0.50000
S2 0.25000000 2.00000 0.50000
S3 0.12500000 3.00000 0.37500
S4 0.06250000 4.00000 0.25000
S5 0.03125000 5.00000 0.15625
S6 0.01562500 6.00000 0.09375
S7 0.00781250 7.00000 0.05469
S8 0.00781250 7.00000 0.05469

Entropy 1.98438



Lossles Data Compression

Notice that the optimal average length is 
bounded by the entropy.

When as here, the probabilities are powers of 2, 
it is possible to reach this limit.

When such is not the case, the theoretical 
bound cannot be reached using this kind of 
encoding (Huffman Coding, after its creator).



The limitations of Information 
Theory

One of the tacit premises in classical IT is that 
the “symbols” are entities defined a priori 
(bytes, words, etc.) whose grouping 
relationship implies a topologic closeness.

For example, if we consider letter couples, we 
normally consider them to be neighbours. In 
English, the couple “th” implies that P(e|th) is 
very high.



Ergodicity
One of the assumed characteristics of the 

data source, for the encoding to be 
effective,  is ergodicity. 

Intuitively, a source is ergodic if “its” 
probabilities “stabilize” after a bounded  
period of time.

A counter-example would be the one 
where we transmitted a block of English 
text, followed by an image (i.e. “jpg”).



Ergodicity

In the last example  clearly, the 
probabilities of the first block will differ 
from the ones in the second block.

We emphasize the fact that we have 
called “probabilities”, in practice, refers 
to the proportions gotten from the 
statistical analysis of data blocks.



“Transformation” of non-ergodic into 
ergodic Sources

The agenda we have set is to find sets of not 
necessarily neighboring symbols in a non-
ergodic source.

If we achieve this, every set of such symbols 
(called a metasymbol) will replace a symbol in 
an equivalent ergodic source and will allow us 
to apply first order techniques to independent 
clusters.



Huffman

Assume the sample:
A A A B A A A A B A A B A A B B

A appears 11 times
B appears 5 times
Only two symbols.
Huffman assigns: A = 0, B = 1.



Higher Orders

cHfre4-gramcHfre3-gramcHfredigram

11

10

01

00

110

111

10

0

110

111

10

0

8 bits11 bits14 bitsTotal

1AABB1B##1BB

1BAAB1BAA1BA

1AAAA1AAA2AB

1AAAB3AAB4AA



Dictionary Methods

!A dictionary with frequent strings is built.
!Every instance of the string is replaced 

by a reference to the dicionary.



Example
(a piece of a poem by Sor Juana)

1. AL_QUE_
2. INGRAT
3. _ME_
4. _AMANTE
5. _A_QUIEN_MI_AMOR_

AL QUE INGRATO ME DEJA, BUSCO AMANTE; 
AL QUE AMANTE ME SIGUE, DEJO INGRATA; 
CONSTANTE ADORO A QUIEN MI AMOR MALTRATA; 
MALTRATO A QUIEN MI AMOR BUSCA CONSTANTE

6. MALTRAT
7. CONSTANTE
8. DEJ
9. BUSC



Result

12O38A, 9O 4; 
143SIGUE, 8O 2A; 
7 ADORO56A; 
6O59A 7



Or else...

AL_QUE_INGRATO_ME_DEJA,_BUSCO_AMANTE;_
AL_QUE_AMANTE_ME_SIGUE,_DEJO_INGRATA;_
CONSTANTE_ADORO_A_QUIEN_MI_AMOR_MALTRATA;_
MALTRATO_A_QUIEN_MI_AMOR_BUSCA_CONSTANTE

! Build a dictionary with patterns, 
not merely with strings.



A possibility...



...but not the only one



Metasymbol compression process

1. A message is given. Find the set of patterns 
which more frequently appear in the 
message.

2. Find the set of patterns which allows the 
shortest expression of the message 
including the “catalog” (a description of the 
metasymbols).

3. Encode the message using the patterns in 
the catalog

4. Optionally also encode such catalog in the 
shortest possible way.



Finding Patterns...

!Characteristics of the Patterns:
– They are NOT strings of consecutive 

symbols. They show “gaps”.
– The size of the patterns and of the gaps 

are arbitrary.
! Reported algorithms to search for these sort 

of patterns have exponential complexity (on 
the size of the message).



...is hard!

! Look for the place where the pattern overlaps 
with itself; find patterns of frequency = 2.

! Find the intersections of these; then the 
intersections of the intersections...and so on.

! The number of intersections grows 
exponentially.

! We have proven that finding the largest 
arbitrary pattern of maximum length is NP-
complete.



The MaximumCommonPattern
Problem

! It is P-verifiable: given a maximum length 
pattern proposal it takes polinomial time to 
determine whether it is really common to all 
strings.

! Reduction: given any other NP-complete 
problem, show that it may be mapped in 
polinomial time to the 
MaximumCommonPattern

! VertexCover was chosen as the NP-complete 
“template”.



Finding a subset

! If we assume that we already have a set 
of frequent patterns we must then find a 
subset of them which allows us to 
express the message and the catalog in 
the shortest possible way.

!We proved that this problem is also NP-
complete.



The OptimalPatternSubset 
Problem

! It is P-verifiable: given a proposal of a subset 
and the optimal compression ratio we may 
verify in polinomial time whether the subset is 
really optimal.

! Reduction: given any instance of an NP-
complete problem known to be NP-complete, 
show that it can be mapped to an instance of 
the OptimalPatternSubset.

! Knapsack 0-1 was selected.



To wrap up

!We need approximation algorithms 
and/or heuristics.
– To find the subset we found a promising 

cover-based heuristic. 
– We must find those patterns which better 

cover the message
– We may then refine with hill-climbers



Heuristics and Meta-heuristics

Given the above, we have complemented 
the heuristics with a genetic algorithm.

This GA is not Holland’s Simple Genetic 
Algorithm but, rather, one we have 
called “Vasconcelos’ GA” (VGA)

Putting the heuristics and VGA together 
we have found some interesting results.



Mini-agenda

!Vasconcelos’ Genetic Algorithm
!Encoding
!Mutation
!Crossover
!Experiments and some results



Vasconcelos’ GA
To overcome the limitations of a SGA we 

introduced the so called Vasconcelos 
GA.

It displays:
a) Deterministic (i -> n-i+1) coupling
b) Full elitism
c) Annular crossover
d) Uniform mutation



VGA
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Encoding

The message is looked upon as an array of 
symbols “A0B1d2C3A4B5e6C7f8”

The genome is made up of the indices of the 
symbols

013  457 268          A0B1C3  A4B5C7 d2e6f8



Mutation 

It consists of a permutation of two indices
4 5 7 0 1 3 2 6 8
4 2 7 0 1 3 5 6 8



Crossover
4 5 7 0 1 8  2 6 3      Individual A

8 4 1 3 2 0  7 6 5      Individual B

4 5 7 3 1 8  2 6 3 Individual A

8 4 1 0 2 0 7 6 5      Individual B

4 5 7 3 1 8  2 6 0 Individual A

8 4 1 0 2 3 7 6 5      Individual B



Catastrophe
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Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas
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Catastrophe
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“Garbage collector”
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Metasímbolo
c1u2n1t2s



Finding the Metasymbols

!Applying the previous operators of 
coupling, selection, crossover and 
mutation to arbitrary messages it is 
possible to find the solution to the 
compression problem by using the 
metasymbolic transform



Comparing compression 
methods

! It is now possible to establish a 
comparison of several compression 
schemes

! In the following table we show the 
results of compressing sets of size 512 
and 1,024



Results



...Results



Explaining the messages

To these algorithms a string of 
aminoacids is not distinguishable from a 
string of letters, or pixels, or...

Hence, the meta-symbols embedded in 
the clusters may explain why the 
clusters arise as they do.



Conclusions

It is possible to find unbiased clusters of 
proteins from protein expression as 
aminoacids

It is possible (and hard) to find 
metasymbols in arbitrary sets of data

Applying genetic algorithms + heuristics 
we are able to approximate the solution 
of these NP problems



Conclusions

Once proteins are re-expressed as 
collections of metasymbols the 
underlying patterns are easier to detect

Applying search techniques originally 
stemming from lossless data 
compression it is possible to find the 
reasons behind protein clustering


