
Applications of Pattern Recognition
To Protein Classification

Angel Kuri
Instituto Tecnológico Autónomo de México

akuri@itam.mx

CANCÚN, MÉXICO
May, 2004

Motivation
The basic idea is to achieve unbiased protein

classification.
In our agenda we would like to:

a) Classifiy sets of proteins from simple
organisms (E. coli and S. cerevisiae)

- We use Kohonen’s self-organizing maps
b) Analyze the clusters in order to determine
the reasons why the proteins in the said
clusters appear as they do

- We use specific pattern recognition
techniques now under development

Agenda

1. We make a brief review of
- Proteins
- The genetic code
- Aminoacids

2. We talk a little about the SOMs
3. We discuss lossless compression

algorithms and their relationship to the
problem

Proteins (basic concepts)

Proteins (...basic concepts)

Proteins (...basic concepts)

Proteins (..basic concepts)

Proteins (...basic concepts)

Protein Expression
The following sequence is the expression of a

protein of E. coli:

MARKTKQEAQETRQHILDVALRLFSQQGVSSTS
LGEIAKAAGVTRGAIYWHFKDKSDLFSEIWELF
RPCKRCQPEKANAQQHRLDKITHACRLLEQETP
VTLEALADQVAMSPFHLHRLFKATTGMTPKAWQ
QAWRARRLRESLAKGESVTTSILNAGFPDSSSY
YRKADETLGMTAKQFRHGGENLAVRYALADCEL
GRCLVAESERGICAILLGDDDATLISELQQMFP
AADNAPADLMFQQHVREVIASLNQRDTPL

Protein Structure

Protein Structure

Protein Classification

Protein Classification

...Protein Classification

...Protein Classification

...Protein Classification

...Protein Classification

Hypothesis

It is possible to achieve classification of
the proteins of a living organism (we
shall focus on E. coli and S. cerevisiae)
paying attention solely to the structural
characteristics (strings of aminoacids) of
the proteins.

Clustering

The first problem is to attain the automatic
clustering of the diverse proteins.

To do this, we shall use self-organizing
maps in which the determination of the
cluster membership is achieved using
genetic algorithms.

Step 1:

In this map all
neighbouring neu-
rons belong to a
cluster.
But we do not
know the
clusters’ bound-
aries.

An Example of a SOM

In this map the
neurons have
been labeled,
so that we know
to which cluster
each neuron
belongs.

Present Status

!As of today, we have achieved initial
success by finding sets of proteins
whose basic clustering is derived from
structural relationships between the
aminoacids

!Much work remains to be done

Explaining the Clusters

By using SOMs we may find non-biased
clusters.

To explain why they cluster in such way it
is possible to apply meta-symbolic
search algorithms.

Explaining the Clusters

Our second task is, perhaps, more challenging
than the first one

Once we achieve structural clustering, we
would like to find common structures in the
proteins in each cluster

To this effect we apply data compression
techniques

The basic idea is to remove redundancy from
the proteins and THEN look for similarities

A Protein as a Message

As stated, a protein may be expressed as a
string of symbols (aminoacids)

In this sense, what we assume is that the
original expression of any such protein may
be replaced by a shorter, more compact way

We propose to identify the underlying patterns
in order to uncover a similarity measure
between different proteins

Lossles Data Compression

Symbol P(Si) Sum Code Length Avg(L) Std
S1 0.50000000 1.00000 0 1 0.500 3
S2 0.25000000 0.50000 10 2 0.500 3
S3 0.12500000 0.25000 110 3 0.375 3
S4 0.06250000 0.12500 1110 4 0.250 3
S5 0.03125000 0.06250 11110 5 0.156 3
S6 0.01562500 0.03125 111110 6 0.094 3
S7 0.00781250 0.01563 1111110 7 0.055 3
S8 0.00781250 1111111 7 0.055 3

SUMA 1.984 3

Information Theory
The information of a symbol (as per

Shannon), is given by:

where Pi=probability that symbol Si
appears.

The average information (Entropy) is
given by:

)(Plog)I(S i2i −=

∑ ⋅=
i

ii)I(SPH(S)

Lossles Data Compresion

Symbol P(Si) I(Si)
Avg.

Information
S1 0.50000000 1.00000 0.50000
S2 0.25000000 2.00000 0.50000
S3 0.12500000 3.00000 0.37500
S4 0.06250000 4.00000 0.25000
S5 0.03125000 5.00000 0.15625
S6 0.01562500 6.00000 0.09375
S7 0.00781250 7.00000 0.05469
S8 0.00781250 7.00000 0.05469

Entropy 1.98438

Lossles Data Compression

Notice that the optimal average length is
bounded by the entropy.

When as here, the probabilities are powers of 2,
it is possible to reach this limit.

When such is not the case, the theoretical
bound cannot be reached using this kind of
encoding (Huffman Coding, after its creator).

The limitations of Information
Theory

One of the tacit premises in classical IT is that
the “symbols” are entities defined a priori
(bytes, words, etc.) whose grouping
relationship implies a topologic closeness.

For example, if we consider letter couples, we
normally consider them to be neighbours. In
English, the couple “th” implies that P(e|th) is
very high.

Ergodicity
One of the assumed characteristics of the

data source, for the encoding to be
effective, is ergodicity.

Intuitively, a source is ergodic if “its”
probabilities “stabilize” after a bounded
period of time.

A counter-example would be the one
where we transmitted a block of English
text, followed by an image (i.e. “jpg”).

Ergodicity

In the last example clearly, the
probabilities of the first block will differ
from the ones in the second block.

We emphasize the fact that we have
called “probabilities”, in practice, refers
to the proportions gotten from the
statistical analysis of data blocks.

“Transformation” of non-ergodic into
ergodic Sources

The agenda we have set is to find sets of not
necessarily neighboring symbols in a non-
ergodic source.

If we achieve this, every set of such symbols
(called a metasymbol) will replace a symbol in
an equivalent ergodic source and will allow us
to apply first order techniques to independent
clusters.

Huffman

Assume the sample:
A A A B A A A A B A A B A A B B

A appears 11 times
B appears 5 times
Only two symbols.
Huffman assigns: A = 0, B = 1.

Higher Orders

cHfre4-gramcHfre3-gramcHfredigram

11

10

01

00

110

111

10

0

110

111

10

0

8 bits11 bits14 bitsTotal

1AABB1B##1BB

1BAAB1BAA1BA

1AAAA1AAA2AB

1AAAB3AAB4AA

Dictionary Methods

!A dictionary with frequent strings is built.
!Every instance of the string is replaced

by a reference to the dicionary.

Example
(a piece of a poem by Sor Juana)

1. AL_QUE_
2. INGRAT
3. _ME_
4. _AMANTE
5. _A_QUIEN_MI_AMOR_

AL QUE INGRATO ME DEJA, BUSCO AMANTE;
AL QUE AMANTE ME SIGUE, DEJO INGRATA;
CONSTANTE ADORO A QUIEN MI AMOR MALTRATA;
MALTRATO A QUIEN MI AMOR BUSCA CONSTANTE

6. MALTRAT
7. CONSTANTE
8. DEJ
9. BUSC

Result

12O38A, 9O 4;
143SIGUE, 8O 2A;
7 ADORO56A;
6O59A 7

Or else...

AL_QUE_INGRATO_ME_DEJA,_BUSCO_AMANTE;_
AL_QUE_AMANTE_ME_SIGUE,_DEJO_INGRATA;_
CONSTANTE_ADORO_A_QUIEN_MI_AMOR_MALTRATA;_
MALTRATO_A_QUIEN_MI_AMOR_BUSCA_CONSTANTE

! Build a dictionary with patterns,
not merely with strings.

A possibility...

...but not the only one

Metasymbol compression process

1. A message is given. Find the set of patterns
which more frequently appear in the
message.

2. Find the set of patterns which allows the
shortest expression of the message
including the “catalog” (a description of the
metasymbols).

3. Encode the message using the patterns in
the catalog

4. Optionally also encode such catalog in the
shortest possible way.

Finding Patterns...

!Characteristics of the Patterns:
– They are NOT strings of consecutive

symbols. They show “gaps”.
– The size of the patterns and of the gaps

are arbitrary.
! Reported algorithms to search for these sort

of patterns have exponential complexity (on
the size of the message).

...is hard!

! Look for the place where the pattern overlaps
with itself; find patterns of frequency = 2.

! Find the intersections of these; then the
intersections of the intersections...and so on.

! The number of intersections grows
exponentially.

! We have proven that finding the largest
arbitrary pattern of maximum length is NP-
complete.

The MaximumCommonPattern
Problem

! It is P-verifiable: given a maximum length
pattern proposal it takes polinomial time to
determine whether it is really common to all
strings.

! Reduction: given any other NP-complete
problem, show that it may be mapped in
polinomial time to the
MaximumCommonPattern

! VertexCover was chosen as the NP-complete
“template”.

Finding a subset

! If we assume that we already have a set
of frequent patterns we must then find a
subset of them which allows us to
express the message and the catalog in
the shortest possible way.

!We proved that this problem is also NP-
complete.

The OptimalPatternSubset
Problem

! It is P-verifiable: given a proposal of a subset
and the optimal compression ratio we may
verify in polinomial time whether the subset is
really optimal.

! Reduction: given any instance of an NP-
complete problem known to be NP-complete,
show that it can be mapped to an instance of
the OptimalPatternSubset.

! Knapsack 0-1 was selected.

To wrap up

!We need approximation algorithms
and/or heuristics.
– To find the subset we found a promising

cover-based heuristic.
– We must find those patterns which better

cover the message
– We may then refine with hill-climbers

Heuristics and Meta-heuristics

Given the above, we have complemented
the heuristics with a genetic algorithm.

This GA is not Holland’s Simple Genetic
Algorithm but, rather, one we have
called “Vasconcelos’ GA” (VGA)

Putting the heuristics and VGA together
we have found some interesting results.

Mini-agenda

!Vasconcelos’ Genetic Algorithm
!Encoding
!Mutation
!Crossover
!Experiments and some results

Vasconcelos’ GA
To overcome the limitations of a SGA we

introduced the so called Vasconcelos
GA.

It displays:
a) Deterministic (i -> n-i+1) coupling
b) Full elitism
c) Annular crossover
d) Uniform mutation

VGA

VGA

VGA

Encoding

The message is looked upon as an array of
symbols “A0B1d2C3A4B5e6C7f8”

The genome is made up of the indices of the
symbols

013 457 268 A0B1C3 A4B5C7 d2e6f8

Mutation

It consists of a permutation of two indices
4 5 7 0 1 3 2 6 8
4 2 7 0 1 3 5 6 8

Crossover
4 5 7 0 1 8 2 6 3 Individual A

8 4 1 3 2 0 7 6 5 Individual B

4 5 7 3 1 8 2 6 3 Individual A

8 4 1 0 2 0 7 6 5 Individual B

4 5 7 3 1 8 2 6 0 Individual A

8 4 1 0 2 3 7 6 5 Individual B

Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_*uentas_*uentos_*uantos_*uentos_*uentas
cuentas_*uentos_*uantos_*uentos_*uentas
cuentos_*uantos_*uentos_*uentas
cuantos_*uentos_*uentas
cuentos_*uentas
cuentas

Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**entas_**entos_**antos_**entos_**entas
cuentas_**entos_**antos_**entos_**entas
cuentos_**antos_**entos_**entas
cuantos_**entos_**entas
cuentos_**entas
cuentas

Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**e*tas_**e*tos_**a*tos_**e*tos_**e*tas
cuentas_**e*tos_**a*tos_**e*tos_**e*tas
cuentos_**a*tos_**e*tos_**e*tas
cuantos_**e*tos_**e*tas
cuentos_**e*tas
cuentas

Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**e*tas_**e**os_**a**os_**e**os_**e**as
cuentas_**e*tos_**a**os_**e**os_**e**as
cuentos_**a*tos_**e**os_**e**as
cuantos_**e*tos_**e**as
cuentos_**e*tas
cuentas

“Garbage collector”

cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**e**as_**e**os_**a**os_**e**os_**e**as
cuentas_**e**os_**a**os_**e**os_**e**as
cuentos_**a**os_**e**os_**e**as
cuantos_**e**os_**e**as
cuentos_**e**as
cuentas

Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**e**a*_**e**o*_**a**o*_**e**o*_**e**a*
cuentas_**e**o*_**a**o*_**e**o*_**e**a*
cuentos_**a**o*_**e**o*_**e**a*
cuantos_**e**o*_**e**a*
cuentos_**e**a*
cuentas

cuando_ cuentas _ cuentos _ cuantos _ cuentos _ cuentas

Catastrophe
cuando_cuentas_cuentos_cuantos_cuentos_cuentas

cuando_**e**a*_**e**o*_**a**o*_**e**o*_**e**a*
cuentas_**e**o*_**a**o*_**e**o*_**e**a*
cuentos_**a**o*_**e**o*_**e**a*
cuantos_**e**o*_**e**a*
cuentos_**e**a*
cuentas

cuando_ cuentas _ cuentos _ cuantos _ cuentos _ cuentas

Metasímbolo
c1u2n1t2s

Finding the Metasymbols

!Applying the previous operators of
coupling, selection, crossover and
mutation to arbitrary messages it is
possible to find the solution to the
compression problem by using the
metasymbolic transform

Comparing compression
methods

! It is now possible to establish a
comparison of several compression
schemes

! In the following table we show the
results of compressing sets of size 512
and 1,024

Results

...Results

Explaining the messages

To these algorithms a string of
aminoacids is not distinguishable from a
string of letters, or pixels, or...

Hence, the meta-symbols embedded in
the clusters may explain why the
clusters arise as they do.

Conclusions

It is possible to find unbiased clusters of
proteins from protein expression as
aminoacids

It is possible (and hard) to find
metasymbols in arbitrary sets of data

Applying genetic algorithms + heuristics
we are able to approximate the solution
of these NP problems

Conclusions

Once proteins are re-expressed as
collections of metasymbols the
underlying patterns are easier to detect

Applying search techniques originally
stemming from lossless data
compression it is possible to find the
reasons behind protein clustering

