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Abstract:  The method of Normal Forms is aimed at generating for the solution of a perturbed ODE or PDE an approximation that is valid over an extended range in the independent variables.  If not accounted for in an appropriate manner, resonant terms that emerge in the expansion may generate unbounded (secular) terms in the approximate solution.  This talk focuses on the freedom entailed in the expansion algorithm.  In the case of perturbed ODE’s, it is shown to lead to simple examples of renormalization.  Perturbed PDE’s are afflicted by obstacles to asymptotic integrability, as well as with unexpected sources of secular behavior.  It is shown how the freedom in the expansion may be exploited in order to handle these hurdles.
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1  Freedom in Expansion
Consider a system of perturbed ODE’s
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To find the solution one expands it in a Near-Identity Transformation (NIT):  
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There is a great deal of freedom in the expansion.  Its origin can be intuitively ascribed to the fact that one only specifies the order of magnitude of the deviation of an approximation and the exact solution, for instance,
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This results in non-uniqueness in the definition of the zero-order approximation, as demonstrated in Fig.1.  The thick line represents the full solution, x(t).  To define an O() approximation, one draws in RN a sphere with a radius R = O() around each point of the exact solution.  This defines a “sausage” that contains the exact solution.  Any curve with reasonable smoothness and boundedness properties that lies within is a valid zero-order approximation. Different choices are valid approximations for different ranges in time. Adding higher-order corrections (their structure depending on the zero-order one) defines a sequence, , of progressively better approximations to the solution.
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Fig. 1

A well-known example is the multipole expansion of electromagnetic fields. Away from the origin, the electric field OF a distribution of electrical charges around the origin in 3-dimen-sional space, can be written as
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provided the distribution has finite moments in all orders (see Fig. 2).  Here Q is the total charge, P is the dipole moment and Q is the quadrupole moment.  The functional form of the first nonzero moment is independent of the choice of the origin.  That of all higher moments depends on the choice.
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Fig. 2

As a simple example, consider the electric potential of a dipole made of two unit charges in one-dimension, (see Fig. 3), given by
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Fig. 3

Choose the origin to be between the two charges, at a distance d (0 ≤  ≤ 1) from the positive one.  For small dx, Eq. (5) can be expanded as
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From second order onwards, the functional form of all higher-order terms depends on the choice of origin.  For instance, for  = 0, one has
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A particularly interesting choice is
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The infinite sum is now reduced to a single term:
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2 The Naive Expansion

Consider the equation of the Duffing oscillator:
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This is a conservative system of one degree of freedom, hence integrable, yielding a periodic orbit with angular frequency  ≠ 0 (0 = 1 is the unperturbed frequency), and period T = 2/.  It is convenient to transform Eq. (10) into a first-order ODE for a complex variable, z:
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Substituting in Eq. (12) the Near Identity Transformation (NIT) for z:
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and collecting terms order-by-order, the zero-order equation is
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Eq. (14) is solved by
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The first-order equation becomes
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The underlined term resonates with the homogeneous part of Eq. (16), leading to an unbounded term in z1 (underlined in Eq. (17)), which limits the validity of the O() approximation to t = O(1):
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This “secular” term emerges because of the mismatch between the frequency,  ≠ 1, of the exact solution and the unperturbed one, 0 = 1, used in the basis function for the expansion.  This is similar to the stroboscopic effect occasionally observed in films, when the wheels of a car or the propeller of a plane seem to be rotating in one sense and then the opposite sense, because of the mismatch between their rotation speed and the frame projection rate.

This problem is resolved by incorporating the effect of resonant terms in the time dependence of the zero-order approximation.  Three different methods have been developed over the years for the analysis of ODE’s: Normal Forms [1-9], Averaging [10] and Multiple Time Scales [11-14].  The test of a perturbation scheme is the error it generates and the extent in time over which the approximation to the solution remains valid.  From this point of view, all three methods are equivalent.  If expanded through n’th order in the small parameter, they yield in most cases an error of O(n+1) for times of O(1/).  In later years, method has been applied to PDE’s.

3 Normal Forms for ODE’s

Consider an autonomous dynamical system:
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One is interested in the behavior of the system in the vicinity of a fixed point, where
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Writing
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 and expanding Eq. (18) around y0, one obtains
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where
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          (22)

where to simplify the analysis, the matrix A has been to be in diagonal form.  The higher-order terms, Zn, are nonlinear functions of x.

One now invokes two expansions:  The NIT
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and the Normal Form (NF), which is introduced in order to account for physically relevant effects of the perturbation on the zero-order term, x0:
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Comment: In general, both series are divergent, merely providing an asymptotic expansion of the solution.  Thus, the approximation through a given order is only valid for a limited range in time.

Substituting Eqs. (23) and (24) in Eq. (21), one obtains in each order a homological equation:
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For n ≥ 2, one finds

      
[image: image29.wmf]    (27)

Here “l.o.t.” stands for terms that are calculable in terms of the lower order approximations, which have been already found.  The terms in square brackets are called the Lie Brackets, defined for a pair of vector functions as
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Resonant terms play a crucial role in the NF analysis.  A vector function, R(x), is resonant if its Lie brackets with the unperturbed operator, vanishes:
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We focus on the first-order homological equation, Eq. (26), as representative of the higher-order equations.  The formalism allows for three types of freedom.

First freedom:  The higher-order terms may depend on x0, and on time explicitly: xn = xn(x0;t).  The formalism does not specify how the effect of Z1, the known part in Eq. (26), is divided between the dependence on x0 and the explicit t-dependence.

Second Freedom: The formalism does not specify what part of Z1 should be incorporated in U1, and which part is to generate x1.

Third freedom:  Adding a resonant term to x1 does not change the r.h.s. of Eq. (26).  Hence, x1 is not determined uniquely.

(In the naïve expansion, the choice is xn = xn(t), i.e., only explicit time dependence, and Un≥1 = 0.)

The NF ansatz

(i) No explicit time dependence in xn (=xn (t));

(ii) Un = resonant part on r.h.s. of the homological equation (This prevents the generation of secular terms in the solution.)

Due to (i), Eq. (26) becomes
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Due to (ii), Eq. (30) breaks up into
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        (31.a)
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Comment:  Assumption (i) yields consistent results if Eq. (21) is autonomous and Z0(x) is linear (Eq. (22)).  If either of these requirements is not met, then, depending on the details of the system, the analysis may lead to a dead end of algebraic inconsistency.  One must then relinquish that requirement, and allow xn to depend explicitly on time: xn = xn (x0,t).  This observation becomes crucial in the  analysis of perturbed PDE’s.

For the actual computation, we need to see what characterizes a resonant term.  Assume that (Z1)i is a monomial:
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Can a similar monomial in x1
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account for Eq. (32)?  To see this, we substitute Eqs. (32) and (33) in Eq. (31.b), to obtain
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Thus, a monomial in x1 can account for the monomial in Z1, provided (m() ≠ 0.  Resonance is, therefore, defined as
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Comment:  The definitions, Eqs. (29) and (35) are equivalent when the unperturbed equation is linear.  When it is not, resonance is defined by Eq. (29).

Intuitive meaning of resonance

Assume Eq. (32).  In the lowest-order approximation, each x0,j obeys
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If the monomial is resonant, one has
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which resonates with the unperturbed equation and generates a secular term in the solution.

Theorem (Poincaré)
If no resonance relations exist (all eigenvalues are mutually irrational) then a formal NIT exists
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such that the NF is trivial:
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Poincaré domain

The eigenvalues are said to be in a Poincaré domain in the complex plane if a straight line exists that separates them from the origin (see Fig. 4):
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Fig. 4:  Eigenvalues in Poincaré domain

Theorem (Poincaré)
There are at most a finite number of resonance relations.

Theorem (Poincaré)
The NIT converges if no resonance relations exist.

Theorem (Poincaré & Dulac)

The NIT converges also if resonance relations exist.

Siegel Domain

The eigenvalues are said to be in a Siegel domain if their convex hull contains the origin (see Fig. 5).  There may be an infinite number of resonance relations among the eigenvalues.

Theorem (Siegel)

The NIT converges if no resonance relations exist, and C > 0,  > 0 exist so that for any integer vector m = (m1, m2, …, mN) (mj ≥ 0, ||m|| > 0)
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Comment:  One needs > (n-2)/n to have a non-zero measure set of )
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Fig. 5: Eigenvalues in Siegel Domain

Theorem

If an approximate solution is obtained with the NIT and NF computed as follows:
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then, for sufficiently well behaved Zk, the error estimate is

  
[image: image50.wmf] (42)

Exploitation of freedom in solution

a. Minimal Normal Form (MNF)
Consider the Duffing oscillator, Eq. (12).  In addition to the NIT, Eq. (13), we now invoke the NF
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Substituting both expansions in Eq. (12), one finds
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Writing
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one obtains
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 is constant because this is a conservative, one-degree-of-freedom system.  Note the underlined free resonant term in z1, Eq. (46).  Also note that U1, the first-order term in the NF, is not affected by the freedom in the solution, while U2 is (and so are all Un, n ≥ 2).  This freedom can be exploited to achieve different goals.  For instance, the choice   = 5/32 ensures that z1 vanishes at t = 0, so that the initial condition is fully satisfied by the zero-order approximation.  Of particular interest is the choice   = 17/64, which makes U2 and, hence, the second-order correction to , vanish.  One can prove by induction that the free terms in all higher orders can be chosen so that Un = 0 for all n ≥ 2.  Consequently, the NF and the updated  are formally converted from infinite series into a finite sum [9]:
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The error generated by the MNF generates is appreciably smaller, compared to any other choice of the free resonant terms [9,15].  Fig. 6 shows a comparison between the error incurred with the choice  = 0 and the MNF choice when the NIT is computed through O(), and the NF - through O(2):
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[image: image60.wmf]
Fig. 6: O(2) error in Duffing oscillator,  = -1/6

The MNF idea can be applied to the single harmonic oscillator with any energy conserving perturbation, as well as to systems of several harmonic oscillators, coupled by nonlinear conservative couplings, yielding, again, errors that are appreciably smaller than in other choices of the free terms [15].

b. Radius renormalization in limit cycles
The solutions of the Rayleigh equation for self-sustaining sound oscillations
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and of the equivalent van der Pol equation for current oscillations in a triode
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exhibit limit-cycles.   An example is shown in Fig. 7.

Using the complex variable z, as in Eq.(11), Eq. (53) becomes
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Fig. 7: Limit cycle solution of van der Pol equation.

With the NIT, Eq. (13) and Eq. (47), the zero-order term asymptotes to a circle (the “limit circle”).  The equation for the time dependence of  is
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While the O() term in Eq. (55) does not depend on the freedom in zn, n ≥ 1, all higher terms do.  In general, Eq. (55) yields a limit-circle radius of the form
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Thus, as the value of the control parameter grows away from the bifurcation point ( = 0), one needs to find how the radius is updated.  The free resonant terms in each order in the NIT, starting with O(), enables one to make all higher-order terms in Eq. (55) also vanish at  = 2 (proof by induction):
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Hence, a valid expansion is possible, in which the radius of the limit circle remains at 2 [9]:
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This is useful in particular in situations where obtaining the dependence of the limit-circle radius on the deviation of the control parameter from its bifurcation value is cumbersome.  For example, the evolution of convective rolls in a fluid is governed by the value of the Rayleigh number.  When it goes above a critical value, a bifurcation occurs, and heat transfer changes from mere conduction to convection, as depicted in Fig. 8.  A valid expansion exists such that the amplitude of the zero-order approximation to the oscillations of the fluid velocity vector asymptotes to its value at the onset of the bifurcation.

[image: image69.wmf]
Fig. 8: Convective rolls in a heated fluid.

3  Normal Forms for PDE’s

Integrable PDE’s that are solved by solitons, or solitary waves describe the collective behavior of many complex dynamical systems.  Of these equations, we mention specifically the Burgers equation (describing shock wave propagation in a fluid and to highway traffic dynamics)
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the KdV equation (describing shallow water waves, plasma oscillations in a magnetic field and anharmonic lattice oscillations)
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and the NLS equation (optical soliton propagation in optical fibers)
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These are amplitude equations, derived as lowest-order approximations to the original physical equations, once a small parameter has been identified.  All have wave solutions of the form F(x – vt).  The fate of these solutions when the next-order terms in the expansion are incorporated in the equations is a subject of intense research.  For the application of the NF expansion to PDE’s, see [16-22].  Here, we present cases of the KdV and Burgers equations.

3.a The KdV equation
Eq. (60) has soliton solutions.  The single-soliton solution has the form (see Fig. 9):
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Fig. 9: Single-soliton solution of KdV equation

The structure of multiple-soliton solutions is appreciably more complicated than Eq. (62) [29].  However, they asymptote to a sum of well-separated single-solitons away from the interaction region, a finite domain around the origin (see Fig. 10), where the individual solitons lose their identities.  Away from that region, each soliton is characterized by a wave number k and a velocity v0, related by
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The amplitude of each soliton is proportional to k2.

The physics dictates that the higher-order terms are differential polynomials in w.  Thus, through second order, perturbed KdV equation has the form
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(Here || « 1, and wn = ∂xnw.)  As usual, one now invokes the NIT
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and the NF
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Fig. 10 Two-soliton solution of KdV equation

u(n), the higher-order terms in the NIT, are assumed to be functionals of u (typically, differential polynomials in u).  Un of Eq. (66) are constructed from the resonant terms in the homological equation.  The first-order homological equation, is
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Here 
[image: image79.wmf].  The Lie brackets are defined as
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Resonant terms are defined as functions for which Eq. (68) vanishes.  There is an infinite hierarchy of resonant terms, called symmetries [16-26] and denoted by Sn[u].  The first three symmetries are:
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Invoking the NF is expected to lead to (i) Elimination of secular terms in the NIT; (ii) Accounting for important physical effects of the perturbation already in the zero-order term (e.g., updating of the relation between soliton velocity and wave number); (iii) Integrability of the NF; (iv) The nature of the zero-order solution is similar to that of the unperturbed solution.

Resonant terms are identified as symmetries multiplied by known perturbation parameters.  Thus, through O(2), the normal form is found to be
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It is integrable, and has the same solutions as the unperturbed equation.  The only modification is in the relation between the wave number and the velocity for each soliton, which becomes
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In O(), these expectations are fulfilled;  A differential polynomial solution is found for u(1).  Problems arise in O(2).  Having removed the resonant term from the O(2) homological equation and assuming for u(2) a differential polynomial in u, one finds that not all the terms generated by the perturbation in the equation can be accounted for.  These terms constitute the obstacle to asymptotic integrability [16-22,26-28]:  In the absence of other options, they must be included in U2, modifying the NF into
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R(2), the collection of unaccounted for terms, is not a pure symmetry.  As a result, it spoils the integrability of the NF.  Consequently, the zero-order term loses the simple wave nature of the unperturbed solution.  In particular, in the case of the two-soliton solution, each of the wave numbers is modified by an O(4), time-dependent correction, a third soliton is generated, whose wave number is also O(4) and time-dependent and whose amplitude is O(8) [18,20].  In addition, “radiation” terms are found that correspond to contributions that decay in time.  Because of the loss of integrability, all these new effects can be only found numerically.  The advantage of this approach is that the NIT remains a sum of differential polynomials in the zero-order term, u, with coefficients that can be found algebraically.  With this, the approach has fulfilled the goals of the method of NF.  It has updated the time dependence of the zero-order term with physically relevant effects of the perturbation, and has generated an NIT with bounded terms.  Thus, the estimate of the difference between the approximate solution and the exact one is expected to remain valid for t and x extended to O(1/).

In the following, an alternative algorithm [30] is presented, which also achieves the goals of the method of NF.  It is based on the fact that the freedom in the expansion can be exploited to account for the obstacles in a different manner.  As mentioned at the beginning of this review, the formalism slows for an explicit dependence of u(n) of the NIT on the independent variables t and x.  (In the case of ODE’s, this is sometimes the only way out.)  Allowing for such a dependence, one can account (numerically) for the effect of the second-order obstacle, R(2), by the second-order correction in the NIT, u(2).  Thus, one writes
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In Eq. (73), ud(2)[u] is a differential polynomial in u, and ur(2)(t,x) depends explicitly on t and x.  One exploits ud(2)[u] to eliminate terms in the NIT, and the remaining obstacle, R(2), is accounted for by ur(2)[u], through
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[image: image111..pict]Unless care is taken in the choice of ud(2)[u], the resulting obstacle, may generate a secular contribution through  Eq. (74).  This hurdle is avoided if one chooses for ud(2)[u], the same differential polynomial found in the analysis of the single soliton case.  This choice ensures that the obstacle is expressible in terms of symmetries of the unperturbed equation, vanishes in the single-soliton case, and, most important, it is localized in a small domain around the origin (see Fig. 11).  Thanks to the freedom in the expansion, the obstacle may be reduced to
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Fig. 11 Canonical obstacle, two-soliton case

With a localized obstacle, Eq. (74) yields a bounded contribution, ur(2), exemplified by Fig. 12.
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Fig. 12 Canonical obstacle contribution to NIT

This new alternative achieves the goals of the Method of NF:  The NF is solved and the NIT is bounded, so that the approximate solution remains valid over t and x ranges of O(1/).

3.b  The Burgers equation

Eq. (59) has wave-front solutions given by
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A single-front solution is shown in Fig. 13, and a two-front solution  in Fig. 14.


Fig. 13: Single-front solution of Burgers equation.








Fig. 14: Two-front solution of Burgers equation

The original fronts, denoted by 1 & 2, with characteristics x =  kit, collide and coalesce into a third front, the interaction region, denoted by 3.  Its characteristic is x =  (k1 + k2)t.  Here, unlike the KdV equation, the two initial waves lose their identities and the interaction region is not localized in the x-t plane.

The Burgers equation with a first-order perturbation is
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          (77)

Again, one invokes the NIT, Eq. (65) and the NF, Eq. (66).  We focus on the O() analysis, as an obstacle to integrability occurs already in the latter.

The structure of u(1) allowed by the formalism is
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In the standard analysis, the NF is
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        (79.a)
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It is integrable, and has the same wave front solutions as the unperturbed equation.  The only change is that the velocity of each front is updated by the effect of the perturbation:
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However, trying to solve for u(1) of Eq.(78) through the homological equation, Eq.(67), an obstacle to integrability emerges; u(1) cannot account for all the terms in the homological equation, unless [21,22]
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To see what actually happens, one has to examine specific solutions. In the single-front case, the NF assumes the integrable form of Eq. (79), the solution for u(1):
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(the subscript s signifies that this is the solution for the single-front case) is bounded for all t and x and the obstacle vanishes.

In multiple-front solutions, one encounters two problems.  First, q(t,x) develops secular behavior along the interaction region. In addition, the obstacle does emerge.  For example, in the two-front case one has
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Along the line x = (k1 + k2) t
 
[image: image98.wmf](84)

As results, the term qux in Eqs. (78) or (82) is unbounded. As we allow u(1) to have an explicit t- and x-​ dependence, we may as well regularize this unbounded behavior by writing


[image: image99.wmf](85)

(Note that the coefficients of the differential polynomial part in Eq. (85) are the same as in the single-front case!)  Any attempt to solve the effect of the obstacle simultaneously in the x-t plane in the region of the two original fronts and in the interaction region fails. A possible way out is found in performing the NF analysis separately for each region [31].

In the region of the two original fronts, q0 vanishes exponentially away from the origin.  With the NF of Eq. (79.a) and u(1) of Eq. (85), the obstacle obtains a “canonical” form expressed in terms of symmetries:
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Eq. (86) guarantees that the obstacle vanishes explicitly in the case of the single-front solution.  In the two-front case, it has the form shown in Fig. 15.  As it vanishes exponentially fast in the region of the original fronts, it generates a bounded solution in that region.  However, its structure along the characteristic of the interaction region leads to a ur(1) that is secular along that line.


Fig. 15: Canonical O() obstacle in Burgers equation
For this reason, the analysis along the interaction region is different.  The presence of q0 in Eq. (85) guarantees that u(1) is bounded along the characteristic of that region.  Coupled with a wave number dependent updating of the NF:
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the resulting obstacle, shown in Fig. 16, decays exponentially in the interaction region, hence it generates there a bounded contribution.


Fig. 16: O() obstacle in Burgers equation, NF: Eq. (87)
Thus, by adopting a different updating procedure for the NF in the region of the original fronts and in the interaction region, one can develop branches of the solution each bounded in its corresponding region.  The significance of the obstacles is that they reflect the effect of front-front interaction on the solution of the perturbed equation through a wave-number dependent modification of the NF.  There are other choices of the NIT and the NF that may resolve the problem of secular terms, but they all lead to the need to treat the different regions separately.

4.  Concluding Comments

This review has focused on the exploitation of the freedom in the NF expansion in the analysis of perturbed integrable ODE’s and PDE’s.  One important observation is that the common choice, adopted in the standard analysis, that the higher-order terms in the NIT are functionals of the zero-order approximation and do not depend explicitly on the independent variables, only works in specific cases.  In general, it may lead to a dead end of algebraic inconsistency.

In the case of ODE’s this has never been a matter of concern, as the common systems of equations studied have been autonomous and with linear unperturbed parts.  In the case of perturbed PDE’s, this issue was not encountered as long as researchers were satisfied with the single-wave solution, or the lowest-order approximation to multiple-wave solutions.  Even when higher orders became of interest, the problem was not observed for quite a while, because in equations such as KdV and NLS, the obstacle only emerges in second order (conserved quantities that these equations have prevent the emergence of a first-order obstacle).   In the Burgers equation, a first-order obstacle exists, but that equation has not been studied as intensely as those that have soliton solutions.

In the case of localized solutions (solitons) the analysis of the KdV equation suggests that an alternative to the standard analysis of obstacles exists, which provides as valid a NF expansion as the standard analysis.  In the latter, the NF loses its integrability, has to be solve numerically and the zero-order approximation is not as simple anymore as the unperturbed solution.  On the other hand, the NIT remains a sum of differential polynomials the coefficients of which can be computed by simple algebraic means. The gain in the new alternative, which exploits the freedom in the expansion, is that the NF remains integrable, its solution retaining the simple soliton structure of the unperturbed equation.  The NIT yields a bounded approximation, part of which, however, needs to be obtained numerically.

In the case of the Burgers equation, because of the spatially extended nature of the solution, even with the freedom in the expansion, only the analysis of the asymptotic behavior of the solution can be performed, and separately for the region in the x-t plane of the original fronts and for the interaction region.

While the physical interpretation of the results of a perturbative calculation may depend on the algorithm employed, the only relevant test is the extent of the validity of the approximate solution over extended ranges in the independent variables.
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