Stratifying Generalized Linear Systems by means a Derivative Feedback

M. Isabel García-Planas

Universitat Politècnica de Catalunya Spain
E-mail: maria.isabel.garcia@upc.es
Tenerife 2004

Abstract

We consider generalized linear time invariant systems in the form $E \dot{x}(t)=A x(t)+B u(t)$ with $E, A \in M_{n}(\mathbb{C}), B \in$ $M_{n \times m}(\mathbb{C})$, arising naturally in a variety of circumstances.

It is well known that the regularity condition $\operatorname{det} E \neq 0$ guarantees the existence and uniqueness of solutions. In this work we study necessary and sufficient conditions in order that the system can be normalized by means of a derivative feedback, that is to say conditions that ensure the existence of a control $u(t)=-V \dot{x}(t)+w(t)$ with $V \in M_{m \times n}(\mathbb{C})$ such that the matrix $E+B V$ in the closed loop system $(E+B V) \dot{x}(t)=A x(t)+B w(t)$ is invertible and consequently the close loop system is uniquely solvable. We also study conditions for controllability of the close loop system ensuring the existence of a feedback $w(t)=U x(t)+\omega(t)$ with $V \in M_{m \times n}(\mathbb{C})$, such that the system $(E+B V) \dot{x}(t)=(A+B U) x(t)+B \omega(t)$ has a stable solution.

Finally, a stratification of the space of orbits of the systems that can be normalized is presented.

- Generalized linear dynamical systems,
- Singular systems,
- Daes,
- Descriptor systems,
- semi-state systems,

$$
\begin{equation*}
E \dot{x}(t)=A x(t)+B u(t) \tag{1}
\end{equation*}
$$

$E, A \in M_{p \times n}(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})$.
[1] L. Dai, Singular Control Systems, Springer, Berlin, 1989.
[2] P.Kunkel, V. Mehrmann, A new look at pencils of matrix valued functions, LAA 212/213 (1994) 215-248.
[3] W.C. Rheinboldt, Differential-algebraic systems as differential equations on manifolds, Math. Comput. 43 (1984) 473-482.
[4] S. Feldmann, G.Heining, Partial realization for singular systems in standard form. LAA 318 (2000), pp 127-144.

Notations:

- $M_{r \times s}(\mathbb{C})$ the space of complex matrices having r rows and s columns, and in the case which $r=s$ we write $M_{r}(\mathbb{C})$.
- $\mathcal{M}=\left\{(E, A, B) \mid E, A \in M_{n}(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})\right\}$ corresponding to a generalized time-invariant linear systems

$$
\begin{equation*}
E \dot{x}(t)=A x(t)+B u(t) \tag{2}
\end{equation*}
$$

Remark 1. when $E=I_{n}$ it is called standard system, and we write (A, B) for $\dot{x}(t)=A x(t)+$ $B u(t)$.

If E invertible:

$$
E \dot{x}(t)=A x(t)+B u(t)
$$

$$
\downarrow
$$

$$
\dot{x}=E^{-1} A x(t)+E^{-1} B u(t)
$$

Definition 1. We say that a generalized system is standardizable if the matrix E is invertible.

Some authors call normalizable instead of standardizable

Example 1. We consider the generalized system

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u
$$

The solution is:

$$
\binom{x_{1}(t)}{x_{2}(t)}=\binom{-\dot{u}(t)}{-u(t)}
$$

- Then: there not exists solution with initial condition x_{0} unless $x_{0}=(-\dot{u}(0),-u(0))$.

If we consider $u=u_{1}-V \dot{x}$ with $V=\left(\begin{array}{ll}1 & 0\end{array}\right)$ the system becomes $(E+B V) \dot{x}=A x+B u_{1}$ with $(E+B V)$ invertible.

The standard system:

$$
\dot{x}=(E+B V)^{-1} A x+(E+B V)^{-1} B u_{1}
$$

is controllable.

If E not invertible:

$$
\exists u_{1}(t)=u(t)+G \dot{x}(t), G \in M_{m \times n}(\mathbb{C})
$$

such that $E+B G$ is invertible?
if yes

$$
E \dot{x}(t)=A x(t)+B u(t)
$$

\downarrow

$$
\dot{x}(t)=(E+B G)^{-1} A x(t)+(E+B G)^{-1} B u(t)
$$

Definition 2. We say that a generalized system is standardizable by derivative feedback if the matrix $E+B G$ for some matrix G, is invertible.

Remark 2. Standardizble \Longrightarrow Standardizable under derivative feedeback.

(It suffices to take $G=0$)

In the sequel we will call standardizable systems.

Feedback and derivative feedback Equivalence
Definition 3. (E_{1}, A_{1}, B_{1}) is equivalent to $\left(E_{2}, A_{2}, B_{2}\right)$ if and only if there exists invertidle matrices $P \in G l(n ; \mathbb{C}), R \in G l(m ; \mathbb{C})$, and matrices $F, G \in M_{m \times n}(\mathbb{C})$ such that

$$
\begin{align*}
& E_{2}=P^{-1} E_{1} P+P^{-1} B G, \\
& A_{2}=P^{-1} A_{1} P+P^{-1} B F, \tag{3}\\
& B_{2}=P^{-1} B_{1} R,
\end{align*}
$$

- Matrix expression

$$
\left(\begin{array}{lll}
E_{2} & A_{2} & B_{2}
\end{array}\right)=P^{-1}\left(\begin{array}{lll}
E_{1} & A_{1} & B_{1}
\end{array}\right)\left(\begin{array}{ccc}
P & 0 & 0 \\
0 & P & 0 \\
G & F & R
\end{array}\right)
$$

Proposition 1. If (E_{1}, A_{1}, B_{1}) is equivalent to $\left(E_{2}, A_{2}, B_{2}\right)$. Then (E_{1}, B_{1}) and (A_{1}, B_{1}) are feedback equivalent to $\left(E_{2}, B_{2}\right)$ and $\left(A_{2}, B_{2}\right)$ respectively.

Corollary 1. If necessary we can take a triple (E, A, B) where (E, B) (or (A, B), but not both) in its Kronecker canonical form.

Proposition 2. Let (E, A, B) be a standardizable system and (E_{1}, A_{1}, B_{1}) a system equivalent to it. Then (E_{1}, A_{1}, B_{1}) is also standardizable.

Proof. There exist matrices P, R invertible and G, G_{0} such that

$$
\begin{aligned}
& E=P^{-1} E_{1} P+P^{-1} B_{1} G \\
& B=P^{-1} B_{1} R
\end{aligned}
$$

$E+B G_{0}$ invertible.
Then $E_{1}+B_{1}\left(G P^{-1}+R G_{0} P^{-1}\right)$ is invertible.
\square

Theorem 1. A system $E \dot{x}(t)=A x(t)+B u(t)$ may be standardized by a derivative feedback if, and only if, the pair of matrices (E, B) is either controllable or all its eigenvalues are non zero.

Remark 3. Let $(E, B) \in M_{n}(\mathbb{C}) \times M_{n \times m}(\mathbb{C})$ be a pair of matrices.

$$
\begin{gathered}
\lambda_{0} \in \mathbb{C} \text { is an eigenvalue } \\
\operatorname{rank}\left(\begin{array}{ll}
\lambda_{0} I-E & B
\end{array}\right)<n
\end{gathered}
$$

Example 2. We consider the following system

$$
E \dot{x}(t)=A x(t)+B u(t)
$$

with

$$
E=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad \text { and } \quad B=\binom{1}{0}
$$

The unique eigenvalue of the pair (E, B) is $\lambda=1 \neq 0$. Then, there exists a matrix G such that $E+B G$ is invertible.

We can take, for example $G=\left(\begin{array}{ll}1 & 0\end{array}\right)$, clearly

$$
\operatorname{rank}(E+B G)=2
$$

Question:

If the system $E \dot{x}(t)=A x(t)+B u(t)$ is standardizable by means a derivative feedback, the standardized system
$\dot{x}(t)=(E+B G)^{-1} A x(t)+(E+B G)^{-1} B u_{1}(t)$ is controllable?

g-Controllability

Definition 4. A triple of matrices $(E, A, B) \in$ \mathcal{M} is g-controllable if and only if the matrix

$$
(s E-A \quad B)
$$

has full rank for all $s \in \mathbb{C}$.

This definition is a generalization of controllability notion for pairs (A, B) of matrices representing standard systems.
Definition 5. A pair (A, B) is controllable if and only if the matrix

$$
(s I-A \quad B)
$$

has full rank for all $s \in \mathbb{C}$.

Proposition 3. The g-controllability character is invariant under the equivalence relation considered.

> Theorem 2. Let $E \dot{x}(t)=A x(t)+B u(t)$ be a standardizable by means derivative feedback and g-controllable system. Then the standardized system is controllable.

Remark 4. If a system is standardizable and gcontrollable it is controllable in the sense of for any initial condition x (0) we may choose a control such that the state response starting from $x(0)$ may arrive at any prescribed position.

Example 3. We consider the following system

$$
\begin{equation*}
E \dot{x}(t)=A x(t)+B u(t) \tag{4}
\end{equation*}
$$

with

$$
E=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), A=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), B=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

The system is standardizable by means $G=$ $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$. It is 9 -controllable:

$$
\operatorname{rank}(s E-A \quad B)=3
$$

for all $s \in \mathbb{C}$, then the standardized system is controllable:

$$
\begin{equation*}
\dot{x}(t)=A_{1} x(t)+B u(t) \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
A_{1}= & (E+B G)^{-1} A, B_{1}=(E+B G)^{-1} B \\
& \operatorname{rank}\left(\begin{array}{lll}
B_{1} & A_{1} B_{1} & \left.A_{1}^{2} B_{1}\right)=3
\end{array}\right.
\end{aligned}
$$

Remark 5. The system (??) is pole assignable, then there exists F such that the system

$$
\begin{equation*}
\dot{x}(t)=A_{2} x(t)+B_{1} u(t), \tag{6}
\end{equation*}
$$

with $A_{2}=A_{1}+B_{1} F$ has preassigned eigenvalues.

Taking $u_{1}(t)=u(t)+G \dot{x}(t)-F x(t)$ in the system (??) $E \dot{x}(t)=A x(t)+B u(t)$, the standardized system is (??)

Controllability

Proposition 4. A triple of matrices $(E, A, B) \in$ \mathcal{M} is controllable if and only it is standardizable and g-controllable, that is to say if:

$$
\left.\begin{array}{rl}
\operatorname{rank}\left(\begin{array}{ll}
E & B
\end{array}\right) & =n \\
\operatorname{rank}(s E-A & B
\end{array}\right)=n, \text { for all } s \in \mathbb{C} .
$$

Equivalent relation as Lie group action

$\mathcal{G}=G l(n ; \mathbb{C}) \times M_{m \times n}(\mathbb{C}) \times M_{m \times n}(\mathbb{C}) \times G l(m ; \mathbb{C})$ and its unit element by I. Note that \mathcal{G} is a complex manifold.
Definition 6.

$$
\alpha: \mathcal{G} \times \mathcal{M} \longrightarrow \mathcal{M}
$$

$\alpha((P, F, G, R),(E, A, B))=$
$\left(P^{-1} E P+P^{-1} B G, P^{-1} A P+P^{-1} B F, P^{-1} B R\right)$

Equivalence relation induced: (E_{1}, A_{1}, B_{1}) and (E_{2}, A_{2}, B_{2}) are equivalent if and only if there exists $(P, F, G, R) \in \mathcal{G}$ such that

$$
\alpha\left((P, F, G, R),\left(E_{1}, A_{2}, B_{1}\right)\right)=\left(E_{2}, A_{2}, B_{2}\right)
$$

[1] V. I. Arnold, On matrices depending on parameters, Russian Math. Surveys, 26:2 (1971), pp. 29-43.

- Orbit

$$
\mathcal{O}(E, A, B)=\alpha(\mathcal{G} \times(E, A, B))
$$

- Tangent space

$$
\begin{aligned}
& T_{(E, A, B)} \mathcal{O}(E, A, B)= \\
& \{(E P-P E+B V, A P-P A+B U, B R-P B)\}
\end{aligned}
$$

for all $P \in M_{n}(\mathbb{C}), U, V \in M_{m \times n}(\mathbb{C})$, and $R \in$ $M_{m}(\mathbb{C})$.

- Normal space

$$
\left.\begin{array}{rl}
T_{(E, A, B)} \mathcal{O}(E, A, B)^{\perp}=\{(X, Y, Z): \\
\bar{X}^{t} E-E \bar{X}^{t}+\bar{Y}^{t} A-A \bar{Y}^{t}-B \bar{Z}^{t} & =0 \\
\bar{Z}^{t} B=0, \bar{X}^{t} B=0, \bar{Y}^{t} B & =0
\end{array}\right\}
$$

- Differentiable families of triples

$$
\begin{aligned}
\mathcal{T}: \mathcal{U} & \longrightarrow \mathcal{M} \\
\lambda & \longrightarrow(E(\lambda), A(\lambda), B(\lambda)) \\
0 & \longrightarrow(E, A, B)
\end{aligned}
$$

$\mathcal{U} \subset \mathbb{R}^{\ell}$.

- Generic differentiable families of triples

$$
\mathcal{T}(\lambda)=(E, A, B)+H
$$

with H transversal to $T_{(E, A, B)} \mathcal{O}(E, A, B)$.

- For example

$$
\mathcal{T}(\lambda)=(E, A, B)+T_{(E, A, B)} \mathcal{O}(E, A, B)^{\perp}
$$

Closure hierarchy of orbits

- Frontier condition:

Proposition 5. Let (E_{0}, A_{0}, B_{0}) in the closure $\overline{\mathcal{O}(E, A, B)}$ of $\mathcal{O}(E, A, B)$.

Then $\mathcal{O}\left(E_{0}, A_{0}, B_{0}\right) \subset \overline{\mathcal{O}(E, A, B)}$.

Corollary 2. $\left(E_{0}, A_{0}, B_{0}\right) \in \overline{\mathcal{O}(E, A, B)}$. Then $\overline{\mathcal{O}\left(E_{0}, A_{0}, B_{0}\right)} \subset \overline{\mathcal{O}(E, A, B)}$.
\diamond Problem:
There are a infinite number of orbits.

Strata
Definition 7. Stratum $=$ Union of orbits having the same set of discrete invariants.

- Case $n=2, m=1$.

$$
\begin{aligned}
& \mathcal{S}_{0}=\bigcup_{a_{i} \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0
\end{array}\right)\binom{0}{1}\right) \\
& \mathcal{S}_{1}=\bigcup_{e \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{1}{0}\right) \\
& \mathcal{S}_{2}^{1}=\bigcup_{e, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right)\binom{1}{0}\right) \\
& \mathcal{S}_{2}^{2}=\cup e_{i}, a_{i} \in \mathbb{C} \mathcal{O}\left(\left(\begin{array}{cc}
e_{1} & 0 \\
0 & e_{2}
\end{array}\right),\left(\begin{array}{cc}
a_{1} & 1 \\
a_{2} & a_{3}
\end{array}\right)\binom{0}{0}\right) \\
& e_{1} \neq e_{2} \\
& \mathcal{S}_{3}^{1}=\cup_{e, a_{i} \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
e & 1 \\
0 & e
\end{array}\right),\left(\begin{array}{cc}
a_{1} & 0 \\
a_{2} & a_{3}
\end{array}\right)\binom{0}{0}\right) \\
& \mathcal{S}_{3}^{2}=\cup_{\substack{e_{i}, a_{i} \in \mathbb{C} \\
e_{1} \neq e_{2},}} \mathcal{O}\left(\left(\begin{array}{cc}
e_{1} & 0 \\
0 & e_{2}
\end{array}\right),\left(\begin{array}{cc}
a_{1} & 1 \\
0 & a_{3}
\end{array}\right)\binom{0}{0}\right) \\
& a_{1} \neq a_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}_{4}^{1}=\bigcup_{\substack{e, a_{i} \in \mathbb{C} \\
a_{1} \neq a_{2}}} \mathcal{O}\left(\left(\begin{array}{ll}
e & 1 \\
0 & e
\end{array}\right),\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)\binom{0}{0}\right) \\
& \mathcal{S}_{4}^{2}=\bigcup e_{e_{i}, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{cc}
e_{1} & 0 \\
0 & e_{2}
\end{array}\right),\left(\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right)\binom{0}{0}\right) \\
& e_{1} \neq e_{2} \\
& \mathcal{S}_{5}^{1}=\bigcup_{\substack{e, a_{i} \in \mathbb{C} \\
a_{1} \neq a_{2}}} \mathcal{O}\left(\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)\binom{0}{0}\right) \\
& \mathcal{S}_{5}^{2}=\bigcup e_{i, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{cc}
e_{1} & 0 \\
0 & e_{2}
\end{array}\right),\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\binom{0}{0}\right) \\
& e_{1} \neq e_{2} \\
& \mathcal{S}_{6}^{1}=\bigcup_{e, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right)\binom{0}{0}\right) \\
& \mathcal{S}_{\mathcal{6}}^{2}=\bigcup_{e, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
e & 1 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\binom{0}{0}\right) \\
& \mathcal{S}_{8}=\bigcup_{e, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\binom{0}{0}\right)
\end{aligned}
$$

$\operatorname{codim} \mathcal{S}_{i}=i$

- The collection of strata is a partition of the space \mathcal{M} :

$$
\begin{aligned}
& \cup \mathcal{S}_{i}=\mathcal{M} \\
& \mathcal{S}_{i} \cap \mathcal{S}_{j}=\emptyset \text { if } i \neq j
\end{aligned}
$$

- Frontier condition:

Proposition 6. Let (E_{0}, A_{0}, B_{0}) in the closure $\overline{\mathcal{S}(E, A, B)}$ of $\mathcal{S}(E, A, B)$.

Then $\mathcal{S}\left(E_{0}, A_{0}, B_{0}\right) \subset \overline{\mathcal{S}(E, A, B)}$.
Corollary 3. ($\left.E_{0}, A_{0}, B_{0}\right) \in \overline{\mathcal{S}(E, A, B)}$. Then $\overline{\mathcal{S}\left(E_{0}, A_{0}, B_{0}\right)} \subset \overline{\mathcal{S}(E, A, B)}$.

- There are a finite number of strata

Closure hierarchy

- Strata of Standardizable triples:

$\mathcal{S t a n d} \subset \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}^{1}$

- Strata of Controllable triples:

$$
\text { Cont } \subset \mathcal{S} \text { tan } \subset \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}^{1}
$$

- Subtratification of $\mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}^{1}$
\diamond Partition of \mathcal{S}_{0}

$$
\begin{aligned}
& \tilde{\mathcal{S}}_{0_{1}}=\cup \begin{array}{c}
a_{i} \in \mathbb{C} \\
a_{1} \neq 0
\end{array} \\
& \mathcal{O}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0
\end{array}\right)\binom{0}{1}\right) \\
& \tilde{\mathcal{S}}_{0_{2}}=\cup \begin{array}{l}
a_{i} \in \mathbb{C} \\
a_{1}=0
\end{array} \\
& \mathcal{O}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0
\end{array}\right)\binom{0}{1}\right) \\
& \widetilde{\mathcal{S}}_{0_{1}} \cup \widetilde{\mathcal{S}}_{0_{2}}=\mathcal{S}_{0}, \quad \widetilde{\mathcal{S}}_{0_{1}} \cap \widetilde{\mathcal{S}}_{0_{2}}=\emptyset
\end{aligned}
$$

\diamond Partition of \mathcal{S}_{1}

$$
\begin{aligned}
& \tilde{\mathcal{S}}_{1_{1}}=\cup \begin{array}{l}
e \in \mathbb{C} \\
e \neq 0
\end{array} \\
& \mathcal{O}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{1}{0}\right) \\
& \widetilde{\mathcal{S}}_{1_{2}}=\mathcal{O}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{1}{0}\right) \\
& \widetilde{\mathcal{S}}_{1_{1}} \cup \widetilde{\mathcal{S}}_{1_{2}}=\mathcal{S}_{1}, \quad \widetilde{\mathcal{S}}_{1_{1}} \cap \widetilde{\mathcal{S}}_{1_{2}}=\emptyset
\end{aligned}
$$

\diamond Partition of \mathcal{S}_{2}^{1}

$$
\begin{aligned}
& \widetilde{\mathcal{S}}_{2_{1}}^{1}=\cup_{e, a \in \mathbb{C}} \mathcal{O}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & e
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right)\binom{1}{0}\right) \\
&
\end{aligned}
$$

$$
\widetilde{\mathcal{S}}_{2_{2}}^{1}=\mathcal{O}\left(\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right)\binom{1}{0}\right)\right.
$$

$$
\widetilde{\mathcal{S}}_{2_{1}}^{1} \cup \widetilde{\mathcal{S}}_{2_{2}}^{1}=\mathcal{S}_{2}^{1}, \quad \widetilde{\mathcal{S}}_{2_{1}}^{1} \cap \widetilde{\mathcal{S}}_{2_{2}}^{1}=\emptyset
$$

Proposition 7. The standardizable set is

$$
\text { Stand }=\mathcal{S}_{0} \bigcup \widetilde{\mathcal{S}}_{1_{1}} \bigcup \widetilde{\mathcal{S}}_{2_{1}}^{1}
$$

Proof.

$$
\begin{aligned}
& \operatorname{rank}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & e & 0
\end{array}\right)=2 \Longleftrightarrow e \neq 0 \\
& \operatorname{rank}
\end{aligned}
$$

Proposition 8. The controllable set is

$$
\text { Cont }=\widetilde{\mathcal{S}}_{0_{1}} \bigcup \tilde{\mathcal{S}}_{1_{1}}
$$

Proof.
$\operatorname{rank}\left(\begin{array}{ccc}-a_{1} & -a_{2}+s & 0 \\ 0 & 0 & 1\end{array}\right)=2 \Longrightarrow a_{1} \neq 0$
$\operatorname{rank}\left(\begin{array}{ccc}0 & 0 & 1 \\ -1 & \text { se } & 0\end{array}\right)=2 \forall e$
rank $\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & a-s e & 0\end{array}\right)=1$ for somes $\in \mathbb{C}$

The structure in the neighborhood of strata

$\tilde{\mathcal{S}}_{0_{1}}$ is an open set,
$\tilde{\mathcal{S}}_{\mathrm{O}_{2}}:\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}x & a_{2} \\ 0 & 0\end{array}\right)\binom{0}{1}\right)$,
$\tilde{\mathcal{S}}_{1_{1}}:\left(\left(\begin{array}{ll}0 & 0 \\ x & e\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\binom{1}{0}\right)$
$\tilde{\mathcal{S}}_{1_{2}}:\left(\left(\begin{array}{ll}0 & 0 \\ x & y\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\binom{1}{0}\right)$
$\widetilde{\mathcal{S}}_{2_{1}}^{1}:\left(\left(\begin{array}{ll}0 & 0 \\ x & e\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ y & a\end{array}\right)\binom{1}{0}\right)$
$\widetilde{\mathcal{S}}_{2}^{1}:\left(\left(\begin{array}{ll}0 & 0 \\ x & y\end{array}\right),\left(\begin{array}{lll}0 & 0 \\ z & a\end{array}\right)\binom{1}{0}\right)$

Closure hierarchy

$$
\begin{aligned}
& \operatorname{codim} \tilde{\mathcal{S}}_{0_{1}}=0 \\
& \operatorname{codim} \tilde{\mathcal{S}}_{0_{2}}=1
\end{aligned}
$$

$$
\overline{\tilde{\mathcal{S}}_{0_{2}}} \subset \overline{\tilde{\mathcal{S}}_{0_{1}}} \subseteq \overline{\tilde{\mathcal{S}}_{0}}
$$

$\operatorname{codim} \tilde{\mathcal{S}}_{1_{1}}=1$
$\operatorname{codim} \tilde{\mathcal{S}}_{1_{2}}=2$

$$
\widetilde{\widetilde{\mathcal{S}}_{1_{2}}} \subset \widetilde{\tilde{\mathcal{S}}_{1_{1}}} \subseteq \overline{\tilde{\mathcal{S}}_{1}}
$$

$\operatorname{codim} \widetilde{\mathcal{S}}_{2_{1}}^{1}=2$
$\operatorname{codim} \widetilde{\mathcal{S}}_{2_{2}}^{2}=3$

$$
\widetilde{\mathcal{S}}_{2_{2}}^{1} \subset \widetilde{\mathcal{S}}_{2_{1}}^{1} \subseteq \widetilde{\mathcal{S}}_{2}^{1}
$$

Closure hierarchy

References

[1] S. L. Campbell Singular Systems of Differential Equations Pitman, San Francisco, 1980.
[2] Ch-T Chen Linear System Theory and Desing Holt-Saunders International Editions, Japan, 1984.
[3] M. Carriegos, Ma I. García-Planas Standardization and Pointwise Standardization of Generalized Linear Systems To appear in Linear Algebra and its Aplications (2003).
[4] M ${ }^{\text {a }}$ I. García-Planas Structural Invariants for Singular Systems under Feedback and Derivative Feedback Int. Math. Journal vol 2, 11 (2002), pp. 1011-1020.
[5] J.M. Gracia, I. de Hoyos, I. Zaballa Perturbation of linear control systems Linear Algebra and its Applications, 121 (1989), pp. 353-383.
[6] J.C. Willems Topological classification and structural stability of linear systems. J. Differential Equations 35 (1980) pp. 306318.

