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Abstract

We consider generalized linear time invariant systems in
the form Eẋ(t) = Ax(t)+ Bu(t) with E, A ∈ Mn(C), B ∈
Mn×m(C), arising naturally in a variety of circumstances.

It is well known that the regularity condition detE 6= 0
guarantees the existence and uniqueness of solutions. In
this work we study necessary and sufficient conditions
in order that the system can be normalized by means of
a derivative feedback, that is to say conditions that en-
sure the existence of a control u(t) = −V ẋ(t)+w(t) with
V ∈ Mm×n(C) such that the matrix E +BV in the closed
loop system (E + BV )ẋ(t) = Ax(t) + Bw(t) is invert-
ible and consequently the close loop system is uniquely
solvable. We also study conditions for controllability of
the close loop system ensuring the existence of a feed-
back w(t) = Ux(t) + ω(t) with V ∈ Mm×n(C), such that
the system (E +BV )ẋ(t) = (A+BU)x(t)+Bω(t) has a
stable solution.

Finally, a stratification of the space of orbits of the sys-

tems that can be normalized is presented.
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• Generalized linear dynamical systems,

• Singular systems,

• Daes,

• Descriptor systems,

• semi-state systems,

• ....

Eẋ(t) = Ax(t) + Bu(t) (1)

E, A ∈ Mp×n(C), B ∈ Mn×m(C).
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Notations:

• Mr×s(C) the space of complex matrices hav-

ing r rows and s columns, and in the case which

r = s we write Mr(C).

• M= {(E, A, B) | E, A ∈ Mn(C), B ∈ Mn×m(C)}
corresponding to a generalized time-invariant

linear systems

Eẋ(t) = Ax(t) + Bu(t) (2)

Remark 1. when E = In it is called standard

system, and we write (A, B) for ẋ(t) = Ax(t)+

Bu(t).
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If E invertible:

Eẋ(t) = Ax(t) + Bu(t)

↓
ẋ = E−1Ax(t) + E−1Bu(t)

Definition 1.We say that a generalized system

is standardizable if the matrix E is invertible.

Some authors call normalizable instead of stan-

dardizable
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Example 1. We consider the generalized sys-

tem

(
0 1
0 0

) (
ẋ1
ẋ2

)
=

(
1 0
0 1

) (
x1
x2

)
+

(
0
1

)
u

The solution is:
(

x1(t)
x2(t)

)
=

(
−u̇(t)
−u(t)

)

• Then: there not exists solution with initial

condition x0 unless x0 = (−u̇(0),−u(0)).
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If we consider u = u1−V ẋ with V =
(
1 0

)
the

system becomes (E + BV )ẋ = Ax + Bu1 with

(E + BV ) invertible.

The standard system:

ẋ = (E + BV )−1Ax + (E + BV )−1Bu1

is controllable.
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If E not invertible:

∃u1(t) = u(t) + Gẋ(t), G ∈ Mm×n(C)

such that E + BG is invertible?

if yes

Eẋ(t) = Ax(t) + Bu(t)

↓
ẋ(t)=(E + BG)−1Ax(t) + (E + BG)−1Bu(t)

Definition 2.We say that a generalized system

is standardizable by derivative feedback if the

matrix E+BG for some matrix G, is invertible.
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Remark 2. Standardizble =⇒ Standardizable

under derivative feedeback.

(It suffices to take G = 0)

In the sequel we will call standardizable sys-

tems.
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Feedback and derivative feedback Equivalence

Definition 3. (E1, A1, B1) is equivalent to

(E2, A2, B2) if and only if there exists invert-

ible matrices P ∈ Gl(n;C), R ∈ Gl(m;C), and

matrices F, G ∈ Mm×n(C) such that

E2 = P−1E1P + P−1BG,

A2 = P−1A1P + P−1BF,

B2 = P−1B1R,

(3)

• Matrix expression

(
E2 A2 B2

)
= P−1

(
E1 A1 B1

)



P 0 0
0 P 0
G F R
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Proposition 1. If (E1, A1, B1) is equivalent to

(E2, A2, B2). Then (E1, B1) and (A1, B1) are

feedback equivalent to (E2, B2) and (A2, B2)

respectively.

Corollary 1. If necessary we can take a triple

(E, A, B) where (E, B) (or (A, B), but not both)

in its Kronecker canonical form.
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Proposition 2. Let (E, A, B) be a standardiz-

able system and (E1, A1, B1) a system equiva-

lent to it. Then (E1, A1, B1) is also standard-

izable.

Proof. There exist matrices P , R invertible and

G, G0 such that

E = P−1E1P + P−1B1G

B = P−1B1R

E + BG0 invertible.

Then E1 + B1(GP−1 + RG0P−1) is invertible.
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Theorem 1. A system Eẋ(t) = Ax(t) + Bu(t)

may be standardized by a derivative feedback

if, and only if, the pair of matrices (E, B) is

either controllable or all its eigenvalues are non

zero.

Remark 3. Let (E, B) ∈ Mn(C) ×Mn×m(C) be

a pair of matrices.

λ0 ∈ C is an eigenvalue
m

rank
(
λ0I − E B

)
< n
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Example 2. We consider the following system

Eẋ(t) = Ax(t) + Bu(t)

with

E =

(
0 0
0 1

)
, and B =

(
1
0

)

The unique eigenvalue of the pair (E, B) is

λ = 1 6= 0 . Then, there exists a matrix G such

that E + BG is invertible.

We can take, for example G =
(
1 0

)
, clearly

rank (E + BG) = 2.
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Question:

If the system Eẋ(t) = Ax(t) + Bu(t) is stan-

dardizable by means a derivative feedback, the

standardized system

ẋ(t) = (E + BG)−1Ax(t) + (E + BG)−1Bu1(t)

is controllable?
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g-Controllability

Definition 4. A triple of matrices (E, A, B) ∈
M is g-controllable if and only if the matrix

(
sE −A B

)

has full rank for all s ∈ C.

This definition is a generalization of controlla-

bility notion for pairs (A, B) of matrices repre-

senting standard systems.

Definition 5. A pair (A, B) is controllable if

and only if the matrix
(
sI −A B

)

has full rank for all s ∈ C.
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Proposition 3. The g-controllability character

is invariant under the equivalence relation con-

sidered.

Theorem 2. Let Eẋ(t) = Ax(t) + Bu(t) be

a standardizable by means derivative feedback

and g-controllable system. Then the standar-

dized system is controllable.

Remark 4. If a system is standardizable and g-

controllable it is controllable in the sense of for

any initial condition x(0) we may choose a con-

trol such that the state response starting from

x(0) may arrive at any prescribed position.
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Example 3. We consider the following system

Eẋ(t) = Ax(t) + Bu(t) (4)

with

E =



0 0 0
1 0 0
0 0 1


 , A =



0 0 0
0 1 0
1 0 0


 , B =



1
0
0




The system is standardizable by means G =(
0 1 0

)
. It is g-controllable:

rank
(
sE −A B

)
= 3

for all s ∈ C, then the standardized system is

controllable:

ẋ(t) = A1x(t) + Bu(t), (5)

with

A1 = (E + BG)−1A, B1 = (E + BG)−1B

rank
(
B1 A1B1 A1

2B1

)
= 3
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Remark 5. The system (??) is pole assignable,

then there exists F such that the system

ẋ(t) = A2x(t) + B1u(t), (6)

with A2 = A1 + B1F has preassigned eigenval-

ues.

Taking u1(t) = u(t)+Gẋ(t)−Fx(t) in the sys-

tem (??) Eẋ(t) = Ax(t)+Bu(t), the standard-

ized system is (??)
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Controllability

Proposition 4. A triple of matrices (E, A, B) ∈
M is controllable if and only it is standardizable

and g-controllable, that is to say if:

rank
(
E B

)
= n

rank
(
sE −A B

)
= n, for all s ∈ C.
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Equivalent relation as Lie group action

G = Gl(n;C)×Mm×n(C)×Mm×n(C)×Gl(m;C)

and its unit element by I. Note that G is a

complex manifold.

Definition 6.

α : G ×M −→M
α((P, F, G, R), (E, A, B)) =

(P−1EP + P−1BG, P−1AP + P−1BF, P−1BR)

Equivalence relation induced: (E1, A1, B1) and

(E2, A2, B2) are equivalent if and only if there

exists (P, F, G, R) ∈ G such that

α((P, F, G, R), (E1, A2, B1)) = (E2, A2, B2)
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• Orbit

O(E, A, B) = α(G × (E, A, B))

• Tangent space

T(E,A,B)O(E, A, B) =
{(EP − PE + BV, AP − PA + BU, BR− PB)}

for all P ∈ Mn(C), U, V ∈ Mm×n(C), and R ∈
Mm(C).

• Normal space

T(E,A,B)O(E, A, B)⊥ = {(X, Y, Z) :

X
t
E − EX

t + Y
t
A−AY

t −BZ
t = 0

Z
t
B = 0, X

t
B = 0, Y

t
B = 0

}
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• Differentiable families of triples

T : U −→M
λ −→ (E(λ), A(λ), B(λ))
0 −→ (E, A, B)

U ⊂ R`.

• Generic differentiable families of triples

T (λ) = (E, A, B) + H

with H transversal to T(E,A,B)O(E, A, B).

• For example

T (λ) = (E, A, B) + T(E,A,B)O(E, A, B)⊥
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Closure hierarchy of orbits

• Frontier condition:

Proposition 5. Let (E0, A0, B0) in the closure

O(E, A, B) of O(E, A, B).

Then O(E0, A0, B0) ⊂ O(E, A, B).

Corollary 2. (E0, A0, B0) ∈ O(E, A, B). Then

O(E0, A0, B0) ⊂ O(E, A, B).

¦ Problem:

There are a infinite number of orbits.
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Strata
Definition 7. Stratum = Union of orbits hav-

ing the same set of discrete invariants.

• Case n = 2, m = 1.

S0 =
⋃

ai∈CO
((

0 1
0 0

)
,

(
a1 a2

0 0

) (
0
1

))

S1 =
⋃

e∈CO
((

0 0
0 e

)
,

(
0 0
1 0

) (
1
0

))

S1
2 =

⋃
e,a∈CO

((
0 0
0 e

)
,

(
0 0
0 a

) (
1
0

))

S2
2 =

⋃
ei, ai ∈ C
e1 6= e2

O
((

e1 0
0 e2

)
,

(
a1 1
a2 a3

) (
0
0

))

S1
3 =

⋃
e, ai ∈ C
a2 6= 0

O
((

e 1
0 e

)
,

(
a1 0
a2 a3

) (
0
0

))

S2
3 =

⋃
ei, ai ∈ C
e1 6= e2,
a1 6= a3

O
((

e1 0
0 e2

)
,

(
a1 1
0 a3

) (
0
0

))
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S1
4 =

⋃
e, ai ∈ C
a1 6= a2

O
((

e 1
0 e

)
,

(
a1 0
0 a2

) (
0
0

))

S2
4 =

⋃
ei, a ∈ C
e1 6= e2

O
((

e1 0
0 e2

)
,

(
a 1
0 a

) (
0
0

))

S1
5 =

⋃
e, ai ∈ C
a1 6= a2

O
((

e 0
0 e

)
,

(
a1 0
0 a2

) (
0
0

))

S2
5 =

⋃
ei, a ∈ C
e1 6= e2

O
((

e1 0
0 e2

)
,

(
a 0
0 a

) (
0
0

))

S1
6 =

⋃
e,a∈CO

((
e 0
0 e

)
,

(
a 1
0 a

) (
0
0

))

S2
6 =

⋃
e,a∈CO

((
e 1
0 e

)
,

(
a 0
0 a

) (
0
0

))

S8 =
⋃

e,a∈CO
((

e 0
0 e

)
,

(
a 0
0 a

) (
0
0

))

codimSi = i
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• The collection of strata is a partition of the

space M:

⋃Si = M

Si ∩ Sj = ∅ if i 6= j.

• Frontier condition:

Proposition 6. Let (E0, A0, B0) in the closure

S(E, A, B) of S(E, A, B).

Then S(E0, A0, B0) ⊂ S(E, A, B).

Corollary 3. (E0, A0, B0) ∈ S(E, A, B). Then

S(E0, A0, B0) ⊂ S(E, A, B).

• There are a finite number of strata
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Closure hierarchy

S0
↑
S1

↗ ↖
S1
2 S2

2
↑ ↗ ↖ ↑
S1
3 S2

3
↑ ↗ ↑
S1
4 S2

4
↑ ↑
S1
5 S2

5
↑ ↑
S1
6 S2

6
↖↗
S8
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• Strata of Standardizable triples:

Stand ⊂ S0 ∪ S1 ∪ S1
2

• Strata of Controllable triples:

Cont ⊂ Stand ⊂ S0 ∪ S1 ∪ S1
2

• Subtratification of S0 ∪ S1 ∪ S1
2

¦ Partition of S0

S̃01
=

⋃
ai ∈ C
a1 6= 0

O
((

0 1
0 0

)
,
(

a1 a2
0 0

) (
0
1

))

S̃02
=

⋃
ai ∈ C
a1 = 0

O
((

0 1
0 0

)
,
(

a1 a2
0 0

) (
0
1

))

S̃01

⋃ S̃02
= S0, S̃01

⋂ S̃02
= ∅
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¦ Partition of S1

S̃11
=

⋃
e ∈ C
e 6= 0

O
((

0 0
0 e

)
,
(

0 0
1 0

) (
1
0

))

S̃12
= O

((
0 0
0 0

)
,
(

0 0
1 0

) (
1
0

))

S̃11

⋃ S̃12
= S1, S̃11

⋂ S̃12
= ∅

¦ Partition of S1
2

S̃1
21

=
⋃

e, a ∈ C
e 6= 0

O
((

0 0
0 e

)
,
(

0 0
0 a

) (
1
0

))

S̃1
22

= O
((

0 0
0 0

)
,
(

0 0
0 a

) (
1
0

))

S̃1
21

⋃ S̃1
22

= S1
2, S̃1

21

⋂ S̃1
22

= ∅
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Proposition 7. The standardizable set is

Stand = S0
⋃
S̃11

⋃
S̃1
21

Proof.

rank
(

0 1 0
0 0 1

)

rank
(

0 0 1
0 e 0

)
= 2 ⇐⇒ e 6= 0

Proposition 8. The controllable set is

Cont = S̃01

⋃
S̃11

Proof.

rank
(−a1 −a2+s 0

0 0 1

)
= 2 =⇒ a1 6= 0

rank
(

0 0 1−1 se 0

)
= 2 ∀e

rank
(

0 0 1
0 a−se 0

)
= 1 for somes ∈ C
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The structure in the neighborhood
of strata

S̃01
is an open set,

S̃02
:

((
0 1
0 0

)
,
(

x a2
0 0

) (
0
1

))
,

S̃11
:

(
( 0 0

x e ) ,
(

0 0
1 0

) (
1
0

))

S̃12
:

((
0 0
x y

)
,
(

0 0
1 0

) (
1
0

))

S̃1
21

:
(
( 0 0

x e ) ,
(

0 0
y a

) (
1
0

))

S̃1
22

:
((

0 0
x y

)
, ( 0 0

z a )
(

1
0

))
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Closure hierarchy

codimS̃01
= 0

codimS̃02
= 1

S̃02
⊂ S̃01

⊆ S̃0

codimS̃11
= 1

codimS̃12
= 2

S̃12
⊂ S̃11

⊆ S̃1

codimS̃1
21

= 2

codimS̃2
22

= 3
S̃1
22
⊂ S̃1

21
⊆ S̃1

2
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Closure hierarchy

S̃01
↗ ↖

S̃02
S̃11

↖ ↑
S̃1
21

↖ ↑
S̃1
21
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¯ I. Garćıa-Planas Stan-

dardization and Pointwise Standardization

of Generalized Linear Systems To appear in

Linear Algebra and its Aplications (2003).

37



[4 ] Ma
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