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Abstract

We consider generalized linear time invariant systems in
the form Exz(t) = Az(t) + Bu(t) with £, A € M,(C), B €
M, «m(C), arising naturally in a variety of circumstances.

It is well known that the regularity condition det £ # O
guarantees the existence and uniqueness of solutions. In
this work we study necessary and sufficient conditions
in order that the system can be normalized by means of
a derivative feedback, that is to say conditions that en-
sure the existence of a control u(t) = —Vz(t)+w(t) with
V € Muyuxn(C) such that the matrix £+ BV in the closed
loop system (E + BV)z(t) = Ax(t) + Bw(t) is invert-
ible and consequently the close loop system is uniquely
solvable. We also study conditions for controllability of
the close loop system ensuring the existence of a feed-
back w(t) = Ux(t) + w(t) with V € M,,«»(C), such that
the system (E+ BV)z(t) = (A+ BU)z(t) + Bw(t) has a
stable solution.

Finally, a stratification of the space of orbits of the sys-

tems that can be normalized is presented.



e Generalized linear dynamical systems,
e Singular systems,

e Daes,

e Descriptor systems,

e Semi-state systems,

Ei(t) = Az(t) + Bu(t) (1)

E,Ac Mpxn(C),B € Mpxm(C).
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Notations:

o M,«s(C) the space of complex matrices hav-
ing r» rows and s columns, and in the case which
r = s we write M,(C).

e M={(F,A,B)| E,Ae M,(C),B € Mpxm(C)}
corresponding to a generalized time-invariant
linear systems

Ei(t) = Az(t) + Bu(t) (2)

Remark 1. when E = [, it is called standard
system, and we write (A, B) for z(t) = Ax(t) +
Bu(t).



If E invertible:

Ei(t) = Az(t) + Bu(t)

l

&= E 1Az(t) + E~ 1 Bu(t)

Definition 1. We say that a generalized system
IS standardizable if the matrix E is invertible.

Some authors call normalizable instead of stan-
dardizable



Example 1. We consider the generalized sys-
tem

T he solution is:
(svl(t)) _ (—u(ﬂ)
r2(1) —u(t)

e T hen: there not exists solution with initial
condition xg unless zg = (—u(0), —u(0)).




If we consider u = u1 —Vzx with V = (1 O) the
system becomes (F + BV)x = Az + Buy with
(E + BV) invertible.

T he standard system:

= (E+ BV) 1Az + (E+ BV) 1Buy

Is controllable.




If £ not invertible:

Juq(t) = u(t) + Gz(t),G € Mpyxn(C)
such that E + BG is invertible?

if yes

Ei(t) = Az(t) + Bu(t)

l

:(t)=(E + BG) 1Az(t) + (E + BG) ' Bu(t)

Definition 2. We say that a generalized system
IS standardizable by derivative feedback if the
matrix E+ BG for some matrix G, is invertible.



Remark 2. Standardizble —— Standardizable
under derivative feedeback.

(It suffices to take G = 0)

In the sequel we will call standardizable sys-
tems.
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Feedback and derivative feedback Equivalence

Definition 3. (F1,Aq,B1) is equivalent to
(E>, An, B>) if and only if there exists invert-
ible matrices P € Gl(n;C), R € Gl(m;C), and
matrices F,G € M,xn(C) such that

E,= P 'Ei P+ P 1BG,
A> =P 1A,P+ P 1BF (3)
B> = P"1ByR,

e Matrix expression

N oo

P 0
E> A> B>)=P Y (E; Ay B{)|0 P
(222) <111>GF
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Proposition 1. If (Eq, A1, Bq1) is equivalent to
(EQ,AQ,BQ). Then (ElaBl) and (AlaBl) are
feedback equivalent to (E»,B>) and (Ao, By)
respectively.

Corollary 1. If necessary we can take a triple

(E,A,B) where (E,B) (or (A, B), but not both)
in its Kronecker canonical form.
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Proposition 2. Let (E, A, B) be a standardiz-
able system and (Eq,A1,B1) a system equiva-
lent to it. Then (E1,Aq,B1) is also standard-
izable.

Proof. There exist matrices P, R invertible and
G, Gg such that

E=P 1l P+ P 1BG

B=P 'ByR
E + BGg invertible.

Then|Ey + B1(GP~ ! 4+ RGoP~1) |is invertible.
L]
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Theorem 1. A system Ex(t) = Axz(t) + Bu(t)
may be standardized by a derivative feedback
if, and only if, the pair of matrices (E,B) is
either controllable or all its eigenvalues are non
Zero.

Remark 3. Let (FE,B) € Mp(C) x Mpxm(C) be
a pair of matrices.

Ao € C is an eigenvalue

0

rank ()\OI— E B) <n
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Example 2. We consider the following system

Ei(t) = Az(t) + Bu(t)

(0 O (1
E_<O 1), and B—<O>

The unique eigenvalue of the pair (E,B) is
A= 1%* 0| Then, there exists a matrix G such
that £ + BG is invertible.

with

We can take, for example GG = (1 O), clearly

rank (E 4+ BG) = 2.
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Question:

If the system FEz(t) = Ax(t) + Bu(t) is stan-
dardizable by means a derivative feedback, the
standardized system

#(t) = (E + BG) "t Az(t) + (E + BG) ™! Bu1(t)

is controllable?
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g-Controllability

Definition 4. A triple of matrices (E,A,B) €
M is g-controllable if and only if the matrix

(sE—A B)

has full rank for all s € C.

This definition is a generalization of controlla-
bility notion for pairs (A, B) of matrices repre-
senting standard systems.

Definition 5. A pair (A,B) is controllable if
and only if the matrix

(si—A B)

has full rank for all s € C.
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Proposition 3. The g-controllability character
IS invariant under the equivalence relation con-
sidered.

Theorem 2. Let Exz(t) = Axz(t) + Bu(t) be
a Standardizable by means derivative feedback
and g-controllable system. Then the standar-
dized system is controllable.

Remark 4.1If a system is standardizable and g-
controllable it is controllable in the sense of for
any initial condition z(0) we may choose a con-
trol such that the state response starting from
x(0) may arrive at any prescribed position.
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Example 3. We consider the following system

FEx(t) = Az (t) + Bu(t) (4)
with
O O O O 0O O 1
EFE=1]1 0O0],A=({0 1 0|,B=10
O 01 1 0O 0

The system is standardizable by means G =
(O 1 O). It is g-controllable:

rank (sE—A B) =3

for all s € C, then the standardized system is
controllable:

z(t) = A1z(t) + Bu(l), (5)
with

A1 =(E+BG) 1A, By=(E+BG&) !B

rank (Bl A]_Bl A12Bl) =3
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Remark 5. The system (?7) is pole assignable,
then there exists F such that the system

z(t) = Agz(t) + Byu(t), (6)

with A> = A1 4+ B1F has preassigned eigenval-
ues.

Taking u1(t) = u(t) + Gz(t) — Fx(t) in the sys-
tem (??) Ex(t) = Ax(t) + Bu(t), the standard-
ized system is (?7)
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Controllability

Proposition 4. A triple of matrices (E, A, B) €
M is controllable if and only it is standardizable
and g-controllable, that is to say if:

rank (E B) =n
rank<sE—A B) =n, for alls € C.
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Equivalent relation as Lie group action

G = Gl(n; C) x Mpyxn(C) X Mpyxn(C) X Gl(m; C)
and its unit element by I. Note that G is a
complex manifold.

Definition 6.

a:gx M — M

a((P, F,G,R),(E,A,B)) =
(P~ EP+ P 1BG, P AP+ P 1BF P 1BR)

Equivalence relation induced: (Eq,A1,B1) and
(E>, An, B>) are equivalent if and only if there
exists (P, F,G,R) € G such that

a((P, F,G,R),(E1,A2,B1)) = (E2, Ap, Bo)
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e Orbit

O(E,A,B) =a(g x (E,A,B))

e Tangent space

T(E,A,B)O(E? A, B) —
{(EP — PE+ BV,AP — PA+ BU, BR — PB)}

for all P € M,(C), U,V € Mpuxn(C), and R €
M (C).

e Normal space

Tp A OB, A BT ={(X,Y,Z):
X'E-EX'4+7V'A—AY'-BZ' =0
7Z'B=0,X'B=0,Y'B =0

24



e Differentiable families of triples

T .U — M
A — (E(N),A(N), B(M))
0O — (F,A,B)

U C RE

e Generic differentiable families of triples

T(\) =(E,A,B)+H
with H transversal to T(p 4 p)O(E, A, B).

e For example

T(\) = (E,A,B) 4+ T(g 45 O(E, A, B)*
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Closure hierarchy of orbits

e Frontier condition:
Proposition 5. Let (Eg, Ag, Bg) in the closure
O(E,A,B) of O(E, A, B).

Then O(Eg, Ag,Bg) C O(E, A, B).

Corollary 2. (Eg,Ag,Bg) € O(FE,A,B). Then
O(Eg, Ag, Bo) C O(E, A, B).

o Problem:

There are a infinite number of orbits.
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Strata
Definition 7. Stratum = Union of orbits hav-
ing the same set of discrete invariants.

e Casen=2, m=1.

S1 UeE(CO ( ’(Cl)g )
st=Uuec®( (0 2)( 8 2)(5))
ep O a 1 0
nguez,aiECO((Ol 62)’ a; as (O)>
615&62
e 1 a 0 0
S3 Ue,aiéCO((O €>7(a; a3>(0>)
az #= 0
ep O a 1 0
S3 Uei,aieCO((Ol €2>’<01 a3)(0>)
61#627
a1 7 as
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codimsS; =1
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e [ he collection of strata is a partition of the

space M:

S;iNS; =0ifi# j.

e Frontier condition:
Proposition 6. Let (Eg, Ag, Bg) in the closure

S(E,A,B) of S(E, A, B).

Then S(Eg, Ag,Bg) C S(E, A, B).

Corollary 3. (Eg,Ag,Bg) € S(E,A,B). Then
S(Eop, Ag, Bg) C S(E, A, B).

e [ here are a finite number of strata
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Closure hierarchy

So
1
S1
/
S5
RN
S3
1 /
Si
1
Ss
1
Ss
N\
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e Strata of Standardizable triples:

Stand C SpU S1 U S3

e Strata of Controllable triples:

Cont C Stand C SgU S1 U 821

e Subtratification of SoUS; US3

¢ Partition of &g

501 Ug§02 — So, gol ﬂgoz — @
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¢ Partition of &1

S1,=U,.cc 0((82).(98)(3))
e % 0

S1,=0((88).(28) (3))
S1,US1, =81, S81,NS1, =10

o Partition of S3
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Proposition 7. [ he standardizable set is

Stand = Sp Ugll ngll

Proof.
010
rank 00 1
rank (§9%) =2 < e#0

Proposition 8. The controllable set is

Cont = gol Ugll

Proof.

rank (~91 72T59) =2 = a7 #0
1) —
rank _018060) =2 Ve

rank (8 .9, (1)) = 1 for somes € C
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The structure in the neighborhood
of strata

Sp, is an open set,

S, | ((88):(5%)(9))
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Closure hierarchy

codimSp, = 0
codimsSp, =1

codimSy, =1
codim&y, =2

codimS;, = 2
codimSs, =3

So, C So; € So

éﬂa Ciéal Q;SH

ql ql cl
Si C 83 C S
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Closure hierarchy

501
v N
So, S14
1
8211
1
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